

KEYSTROKE DYNAMICS AND FAIRNESS

Neily SANON

PhD Student, FRANCE ENSICAEN – GREYC - FIME

neily.sanon@unicaen.fr

REYSTROKE PROFILING

Context

Fairness is a real challenge for biometric system

How to trust to these systems regarding unbalanced demography?

Context

GREYC Electronics and Computer Science Laboratory

Trust Biometrics Systems by standard certification

Context

Certification challenges

Ethic

Fairness: Equality and Equity

Paragraph 71 of the GDPR

Legally

Principle of non discrimination

Article 7 of the Declaration of Human Rights
Article 14 of the European Convention on Human Rights

Socially

Trust and acceptance of technology in society

Assess Keystroke dynamics

GREYC
Electronics and Computer Science Laboratory

How the systems works?

FMR: False Match Rate / FNMR: False Not Match Rate

Assess Keystroke dynamics

GREYC Electronics and Computer Science Laboratory

Performance evaluation

Way to quantify errors occurs in a process of recognition

Genuines

Comparisons between biometric samples belonging to the same individual, used to assess intra-class similarity.

Impostors

Comparisons between samples from different individuals, used to evaluate inter-class separability.

Threshold (can be fixed)

A decision boundary above which a similarity score is classified as a match, and below which as a non-match.

False Match Rate (FMR)

$$\text{FMR}(T) = \frac{\text{Number of impostor scores} \geq T}{\text{Total number of impostor comparisons}}$$

False Not Match Rate (FNMR)

$$\text{FNMR}(T) = \frac{\text{Number of genuine scores} < T}{\text{Total number of genuine comparisons}}$$

Assess Keystroke dynamics

GREYC Electronics and Computer Science Laboratory

Problem on evaluation

Differential performance can occur

Bias refer to systematic deviations that can lead to unequal performance across different user groups

Case study: GREYC-NISLAB

GREYC Electronics and Computer Science Laboratory

Database

GREYC-NISLAB: 64 parameters, 5 passwords, 10 attempts)

Password	Description	Size	Features
P1	leonardo dicaprio	17-char	64
P2	the rolling stones	18-char	68
P3	michael schumacher	18-char	68
P4	red hot chilli peppers	22-char	84
P5	united states of america	24-char	92
P_T	fusion of features	99-char	376

Statistics

Ger	nder	Age		Handedness			
M	W	0-17	18-30	31-50	51+	L	R
71%	29%	0%	46.4%	43.6%	10%	11%	89%

Syed Idrus, Syed Zulkarnain & Cherrier, Estelle & Rosenberger, Christophe & Bours, Patrick. (2013). GREYC-NISLAB Keystroke Benchmark Dataset. 10.13140/2.1.4343.4568.

Case study: GREYC-NISLAB

GREYC Electronics and Computer Science Laboratory

Features extraction

Performance: EER(7.45%)

Yris Brice Wandji Piugie, Joël Di Manno, Christophe Rosenberger, Christophe Charrier, Keystroke Dynamics based User Authentication using Deep Learning Neural Networks

Case study: GREYC-NISLAB

GREYC Electronics and Computer Science Laboratory

Fairness metrics 1/2

Metric	Year/authors	Methods Used	Formula
Fairness Discrepancy Rate (FDR)	2022 /ICPR Pereira & Marcel	Weighted combination of max differential FMR/FNMR	FDR $(x) = 1 - (\alpha \times A(x) + (1 - \alpha) \times B(x))$ $A(x) = \max(FMR^{di}(x) - FMR^{dj}(x))$ $B(x) = \max(FNMR^{di}(x) - FNMR^{dj}(x))$
GARBE (Gini Coefficient Based Metric)	2022 /ICPR Howard et al.	Measures dispersion in FMR/FNMR using Gini, then weighted FMR & FNMR	GARBE $(x) = \alpha \times H_{FMR(x)} + (1 - \alpha) \times H_{FNMR(x)}$ $H_t = \left(\frac{n}{n-1}\right) \left(\frac{\sum_{i=1}^n \sum_{j=1}^n t_i - t_i }{2n^2 \overline{t}}\right)$
TM-DP(Theil Index for Differential Demography)	2025 /ICCST (sumbited) Sanon et al.	Measures intra and inter dispersion in FMR/FNMR using Theil, then weighted FMR & FNMR	$T(X) = T_{\text{inter}}(X) + T_{\text{intra}}(X)$ $T_{\text{inter}}(X) = \sum_{g=1}^{G} p_g * \frac{1}{N} \sum_{i=1}^{N} \left(\frac{x_{g,i}}{\bar{x}_g} \log \frac{x_{g,i}}{\bar{x}_g} \right)$ $T_{\text{inter}}(X) = \sum_{g=1}^{G} p_g \frac{\bar{x}_g}{\bar{x}} \log \frac{\bar{x}_g}{\bar{x}}$ $TM-DP = \alpha \cdot T(FMR) + (1 - \alpha) \cdot T(FNMR)$

Bias assessment

Metrics comparison (2/2)

- Globally, handedness are less fair
- Seems FDR captures more less the bias than the other

Industrial perspective

Fime

Propose methodology, Evaluate and certify biometric authentication products

Conclusions and perspectives

- ☐ Importance of evaluating biases in the biometric systems
- Impact on tool deployment in industries
- ☐ More studies combining intersectional biais can be a good way to improve evaluation

The end

[Thank you]

Any Questions?

neily.sanon@unicaen.fr
https://sanon241.users.greyc.fr/

Fairness

Ethic

Fairness: Equality and Equity

Paragraph 71 of the GDPR

Legally

Principle of non discrimination

Article 7 of the Declaration of Human Rights
Article 14 of the European Convention on Human Rights

Socially

Trust and acceptance of technology in society

About keystroke dynamics systems

Unique attributes

