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Fairness is a real challenge for biometric system

Handedness ratio of the world population
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How to trust to these systems regarding unbalanced demography?
Analysis of biases in biometric systems
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Trust Biometrics Systems by standard certification

Anti spoofing Interoperability

K.Neily SANON Analysis of biases in biometric systems



Context 2 GREYC

Certification challenges

Ethic

Fairness: Equality and Equity
Paragraph 71 of the GDPR

Legally

Principle of non discrimination

Article 7 of the Declaration of Human Rights
Article 14 of the European Convention on Human Rights

Socially

Trust and acceptance of technology in society
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Assess Keystroke dynamics 23 GREYC

How the systems works?
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FMR: False Match Rate / FNMR: False Not Match Rate
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Assess Keystroke dynamics 23 GREYC

nics and Computer Science Laboratory

Performance evaluation

Way to quantify errors occurs in a process of recognition

Genuines
Comparisons between biometric samples belonging to the same individual, used to
assess intra-class similarity.

A Decision
threshold (t)

Genuine
distribution

Impostors Imposter
Comparisons between samples from different individuals, used to evaluate inter-class distribution
separability.

Threshold (can be fixed)
A decision boundary above which a similarity score is classified as a match, and below
which as a non-match.

Probability (p)

False
non-match

Number of impostor scores > T

FMR(T) =
(T) Total number of impostor comparisons

Matching score (s)

False Not Match Rate (FNMR)

Number of genuine scores < T

FNMR(T) =

Total number of genuine comparisons
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Problem on evaluation
Differential performance can occur

10
 Impostors

mm Genuines Left handed
== Threshold (0.6)

e Impostors

s Genuines . Right handed

== Threshold (0.6}
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Similarity Score

Bias refer to systematic deviations that can lead to unequal performance across different user groups
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Case study: GREYC-NISLAB

Database

GREYC-NISLAB: 64 parameters, 5 passwords, 10 attempts)

Statistics

71% 29%

0%

Password Description Size Features
Pl leonardo dicaprio 17-char 64
P2 the rolling stones 18-char 68
P3 michael schumacher 18-char 68
P4 red hot chilli peppers 22-char 84
P35 united states of america  24-char 92
Pr fusion of features 99-char 376
M W 0-17 18-30

46.4%

Age

31-50

43.6%

51+

10%

h Electronics and Computer Science Laboratory

L

11%

R

89%

Syed Idrus, Syed Zulkarnain & Cherrier, Estelle & Rosenberger, Christophe & Bours, Patrick. (2013). GREYC-NISLAB Keystroke Benchmark Dataset. 10.13140/2.1.4343.4568.
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Case study: GREYC-NISLAB =53 GREYC

Electronics and Computer Science Laboratory

Features extraction
Performance EER(7.45%)

Process 1:

Data Transformation: ~ : Process 2: Process 3: :
Raw-Vector to : :> Deep Features Extraction :> : Matching Algorithm
Matrix 2D Image Color  : :
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Enroliment Template

‘% " “-“. l.“? JW‘U‘W = Signal-to-image ' Train l

Transformation ﬁ F Train Features

Time series

eResNet-101 Decision
Features Extraction «ShuffleNet Maker
(CNNs) «GoogleNet S
eDarkNet-53 ‘M‘s nae
etrics)
4 h Test Features
Test Pretrained
. Networks I + FMR
: Verification Template : +FNMR
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Yris Brice Wandji Piugie, Joél Di Manno, Christophe Rosenberger, Christophe Charrier, Keystroke Dynamics based User Authentication using Deep Learning Neural Networks
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2 GREYC

e Laboratory

Case study: GREYC-NISLAB

Fairness metrics 1/2

and Computer Sci

Metric

Year/authors

Methods Used

Formula

Fairness Discrepancy

2022/ICPR

Weighted combination

FDR (x) = 1 — (ax A(x) + (1 — a) X B(x))

) of max differential A(x) = max(|FMR% (x) - FMR%¥ (x)|)
Rate (FDR P &M | ; ;
ate (FDR) ereira & Vlarce FMR/FNMR B(x) = max(|FNMR%¥ (x) - FNMRY (x)|)
GARBE (Gini Measures dispersion in _
R 2022/ICPR FMR/FNMR using Gini, | GARBE (¥) = @ X Hpypex) + (1 — @) X Hpymre
Coefficient Based . n oo Y Y tit]
. Howard et al. then weighted FMR & H, = (—) (= E—)
Metric) ENMR t n—1 2n2t
Measures intra and T
Tiia(X) = g * 22 Jog =2~
TM-DP(Theil Index for . inter dispersion in T(X) = Toee(X) + Tina(X) Zl N Z( * )
) . 2025/1CCST (sumbited) . .
Differential Sanon et al FMR/FNMR using Theil, ()= Zp,,%log%”
Demography) ' then weighted FMR & LR

FNMR

TM-DP = a-T(FMR) + (1 — a) - T(FNMR)
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Bias assessment 2 GREYC

Metrics comparison (2/2)

0.6 Metrics
I METRIC FDR
I METRIC_GARBE
== METRIC TMDP
0.5
0.4
i
g 03
- Globally, handedness are less fair
0.2 1
- Seems FDR captures more less the
bias than the other
0.1+
0.0 -
: §
£
Groups
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Industrial perspective 22 GREY

ectronics and Computer Science Laborator y

Fime

Propose methodology, Evaluate and certify biometric authentication products

Fairbio

Input Folder: Browse

@ Enable Metrics

Threshold:

Alpha:

Weight A (wa):

Weight B (whb):

Run Process
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Conclusions and perspectives 2 GREYC

[ Importance of evaluating biases in the biometric systems

O Impact on tool deployment in industries

 More studies combining intersectional biais can be a good way to improve evaluation
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The end 353 GREYC

[Thank you]

Any Questions ?

neily. sanon@unicaen. fr
https://sanon24l1. users. greyc. fr/
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Fairness 3 GREYC
Challenges
Ethic

Fairness: Equality and Equity
Paragraph 71 of the GDPR

Legally

Principle of non discrimination

Article 7 of the Declaration of Human Rights
Article 14 of the European Convention on Human Rights

Socially

Trust and acceptance of technology in society
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About keystroke dynamics systems 553 GREYC
Unique attributes
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