
Security of AI/ML
Teddy Furon
Inria Rennes

Summer School, Cyber in Normandy, Caen 2024



Angles

• The type of AI?
• Decision making AI
• Generative AI

• Access to the model
• White box
• Black box (MLaaS, MLonChips)

• Security issues
• Intrinsic vulnerabilities of the model
• Malicious use of the model

• Security levels
• Nothing is secure, nothing is insecure … to some extend

• Goals
• Recommendations, defenses
• Control, certification



What kind of AI?
Artificial Intelligence

Computers
perform
like humans

Machine Learning

Computers
learn
from data

Deep learning

Algorithm =
Deep Neural Network



What kind of AI

1. A simple definition of Security of ML
2. The rocky horror picture show
3. Case studies

• Local robustness
• Adversarial examples
• Fingerprinting
• Watermarking
• Backdoors



Neural network classifiers
Linear + Non lin.

𝑥 ℓ

ℓ = 𝑓 𝑥; 𝜃 = logits
ℓ = 𝑊!𝜎(𝑊"𝜎 𝑊#𝑥 + 𝑏# + 𝑏")

𝑦 = 𝜎(𝑥)
Non lin. activation function

Linear + Non lin. Classification

SoftMax ArgMax𝑃 5𝑦

Inputs
𝑥 ∈ ℝ$

logits
ℓ ∈ ℝ%

“probabilities” - probits
𝑃 ∈ 𝕊%

predicted class
5𝑦 ∈ 𝑐 = {1, … , 𝑐}

𝑃[𝑖] ∝ 𝑒ℓ[(]

D
(
𝑃[𝑖] = 1



DNN classifiers

• What is the output?
• Logits, probits, predicted class
• Black box

• Differentiable (almost everywhere)
• 2 Gradients ∇E𝑓(𝑥; 𝜃) ∈ ℝ|E|×H ∇I𝑓(𝑥; 𝜃) ∈ ℝJ×H 
• Efficient

• autodiff + backpropagation
• Cost ≈ 2 times a forward pass

• Training 
• SGD: 𝜃("#$) = 𝜃(") - 𝜂∇&Loss( SoftMax(𝑓(𝑥'; 𝜃)) , 𝑦')  Loss: 𝕊(× 𝑐 ⟶ℝ

• Explicability
• Deep dreams or GradCAM: visualisation of ∇)𝑓'(𝑥; 𝜃)  𝑖 ∈ 𝑐



Deep dreams
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2012: DNN AlexNet handily wins the top prize
• Krizhevsky, Sutskever, and Hinton (Univ. of Toronto)
• « That moment is widely considered a turning point in the development of 

contemporary AI »
• « This dramatic quantitative improvement marked the start of an industry-

wide artificial intelligence boom »

DNN giant panda
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ImageNet challenge: the iconic example of A.I.



The big failure

+ 𝜖 ∗
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loudspeaker

school bus

pekinese ostrich

Intriguing properties of neural networks, Szegedy, Goodfellow et al., 2014 
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The big failure

gibbon+ 𝜖 ∗ =giant panda

𝒙* 𝒙9

Explaining and harnessing adversarial examples, Goodfellow et al., 2015 

How can we call “Artificial Intelligence” algorithms so easily deluded! 



1- Definition of Security of ML



False sense of security

Generalization ≠ Robustness ≠ Security

• Generalization: To operate as expected on unseen data
• Unseen but distributed like the training data

• Robustness:  To operate as expected on noisy data
• Unseen and almost distributed like the training data

• Security: To operate as expected on purposely perturbed data
• Presence of an attacker

Safety
Robustness



Adversarial examples

Leakages

Backdoor

Membership Inference

Model Inversion

PoisoningTrojaning

Obfuscation

more than 5,000 papers



ML to the bare bones

Inference

LearningTraining data

Testing data Result

Model

Protection of 3 objects
• Training data
• Model
• Testing data 

14



IT Security to the bare bones: C.I.A. Triad
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Session Chairpersons;

William E. Perry
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U A . NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Acting Director

Issued October 1977

General objectives of such a security audit were agreed to be the
determination of the existence, scope and adequacy of controls in light
of the level of information protection required by the nature of the
system.

Several specific objectives were noted:

a. Determine that all transactions were completely processed and that
they were processed once and only once, (uniqueness of transactions).

b. Determine that each transaction is complete, accurate and authorized,
(completeness, accuracy, and authorization controls for transactions,
i.e. transaction integrity).

c. Determine that processing was complete, accurate, and authorized,
(completeness, accuracy, and authorization controls of processing, i.e.
processing integrity)

.

d. Determine that distribution of processing results was made only to
authorized recipients, (distribution control)

.

e. Determine that data and the required use of system resources were
recoverable, (recoverability control).

f . Determine the ability to detect and analyze security violations,
(detection and analysis capability, i.e. violation control).

It was understood that the auditor would have to first "understand
the system" being audited in order to work towards the stated
objectives. Discussion of security audit led to formulation of the
following definitions.

3. DEFINITIONS

Computer Security — The protection of system data and resources
from accidental and deliberate threats to confidentiality, integrity,
and availability.

Computer Security Audit — An examination of computer security
procedures and measures for the purpose of evaluating their adequacy and
degree of compliance with established policy.

Note: This definition covers computer security, rather than data
security, v^ich is included in the broader concept. It was felt that the
definition of security audit in FIPS PUB 39 dealing with data security
only should be broadened to the definition given here.

Post Processing Audit — The post-facto analysis of input, processing,
and output information for the purpose of validating compliance with

11-4

PART XI: POST-PROCESSING AUDIT TOOLS AND TECHNIQUES

Chairperson: Richard D. Webb
Touche Ross & Company

Participants:

Leo Deege
Defense Audit Service

Philip M. McLellan
Royal Canadian Mounted Police

Albrecht J. Neumann, Recorder
National Bureau of Standards

Michael J. Sopko
GTE Service Corporation

Norman Statland
Price Waterhouse & Company

Robert Stone
Uni royal Corporation

From left to right: Richard D. Webb, Philip M. McLellan, Zella G.

Ruthberg (visiting Vice Chairman), Robert Stone, Leo Deege, Michael J

Sopko, Albrecht J. Neumann

Note: Titles and addresses of attendees can be found in Appendix A.
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Security of Machine Learning

• Confidentiality

• Integrity

• Availability

Training data

Model

Testing data

•

•
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ML + IT Security – Confidentiality = Cryptology

• Testing data
• Inference on encrypted data
• Collaboration: Alice has sensitive testing data, Bob has a valuable model

• Training data
• Learning from encrypted data
• Collaboration: Alice has sensitive training data, Bob has the expertise in ML

Yes, we can!
• Homomorphic Encryption: CONCRETE

[Programmable Bootstrapping Enables Efficient Homomorphic Inference of DNN, Chillotti, CSCML’21]
• Multi Party Coputation: FALCON

[Honest-Majority Maliciously Secure Framework for Private DL, Wagh, PETS’21]
TinyImageNet ( 64x64x3 = 12k - 200 classes ) + VGG16 = x 10,000 slower

• Federated learning
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ML + IT Security – Confidentiality = Cryptology

• Model
• Model embedded on device

• Civil: smartphones, smart speakers [Sonos-privacy]
• Defense: AI embedded in armed vehicles / drones

• Deep Neural Networks + GPU ≠ Code obfuscation

• Communication protocol between GPU and SOC/TEE chips
[ShadowNet: A secure and efficient system for on-device model inference, Sun, IEEE S&P 23]

GPU

X𝑦( = Y𝑊( Z𝑥(:# + [𝑏(

TEE
1. Unmask
2. Apply non-lin. 𝜎  
3. Mask

Z𝑦(

Z𝑥(
New startup in town: Skyld!



ML + IT Security – Confidentiality = Privacy

• Training data
• Given a model, what can the attacker say about the training data?
• Membership Inference Attack

[Bayes Optimal Strategies for Membership Inference, Sablayrolles, ICML’19]
• Reconstruction of training data

[Extracting Training Data from Large Language Models, Carlini, Usenix’21]
• Federated learning with privacy

[An Accurate, Scalable and Verifiable Protocol for Federated DP Averaging, Sabater, ML’22]

• Model (black box)
• Model Identification / Fingerprinting  or Model Extraction / Shadowing

[Stealing machine learning models via prediction APIs, Tramer, Usenix’16]

• Testing data
• Restricted Inference / Data sanitization

[Learning Semi-Supervised Anonymized Representations by Mutual Information, Feutry, ICASSP’20]
[Differentially Private Speaker Anonymization, Shamsabadi, PETS’23] 



Security of Machine Learning
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ML + IT Security – Integrity

• Training data
• Backdooring / Poisoning Attack

[Poisoning Attacks against Support Vector Machines, Biggio, ICML’12]
[A new backdoor attack in CNNs …, Barni, ICIP’19]

• Model
• Backdooring / Trojaning

[TBT: Targeted Neural Network Attack with Bit Trojan, Rakin, CVPR 2020]
[Planting Undetectable Backdoors in Machine Learning Models, Goldwasser, arXiv’22]

• Testing data
• Adversarial examples / Evasion attacks
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ML + IT Security – Availability

• Training data
• ???

• Model
• Deny of Service Attack against DNN

[Sponge Examples: Energy-Latency Attacks on Neural Networks, Shumailov, Euro SP, 2021]

• Testing data
• ???



ML + Information Security: Traceability

• Training data
• Radioactivity

• Embed a watermark in a training set
• Detect the watermark from a model learnt over this training set

[Radioactive data: tracing through training, Sablayrolles, ICML’20]
[Watermarking makes language models radioactive, Sander, arXiv’24]

• Model
• Watermarking of a classifier

[Entangled Watermarks as a Defense against Model Extraction, Jia, Usenix’21]
[DNN Watermarking: Four Challenges and a Funeral, Barni, IHMMSEC’21]

• Watermarking of generative AI (Text, Image, Audio)
[Supervised GAN Watermarking for Intellectual Property Protection, Fei, arXiv’22]

[Proactive Detection of Voice Cloning with Localized Watermarking, San Roman, arXiv’24]
[The Stable Signature: Rooting Watermarks in Latent Diffusion Models, Fernandez, ICCV’23]

• Testing data
• ???



Security of Machine Learning

• Confidentiality

• Privacy

• Integrity

• Traceability

Training data

Model

Testing data

•

•

•

• 3 objects x 4 values - 1 = 11 scenarios

• 11 x types of data x types of learning framework x types of DNN



2- Where do we stand?



Where do we stand?

1. The Rocky Horror Picture Show
• Empirical Evidence of Attacks
• Alarming, Threatening

2. Research work in the lab
• Reproducibility
• Empirical discovery of key factors
• Theoretical explanations

3. Real life: Auditing, Advising
• Run SotA attacks and see …



Where do we stand? Adversarial examples

gibbon+ 𝜖 ∗ =

𝒙* 𝒙9

giant panda

• Not reproducible
• Explanation (?):

• adversarial examples = tensor of scalars ≠ tensor of integers



Where do we stand? Adversarial examples

• Naïve defenses are not working
• Gradient obfuscation
“Since all white-box attacks resort to the gradient of the neural network, just 
introduce a non-linearity to forbid its computation”

𝑓 = 𝑓\ ∘ 𝑓] → 𝑓 = 𝑓\ ∘ 𝑄 ∘ 𝑓]

• The attacker is not obliged to do so!
[Obfuscated gradients give a false sense of security: Circumventing defenses to 
adversarial examples, Athalaye, ICML 2018]

• This paper circumvents 7 defenses proposed in ICLR 2018



Where do we stand? Adversarial examples

• Proposal of best practices for evaluating attacks/defenses

• [On Evaluating Adversarial Robustness, Carlini, arXiv 2019]

• Fear Nicholas Carlini (Google Deepmind)
• [Cutting through buggy adversarial example defenses: fixing 1 line of code 

breaks Sabre, Carlini, arXiv 2024]
• Significant flaws in Sabre, defense paper accepted at IEEE S&P 2024
• Not following any of the best practices



Where do we stand? Adversarial examples
• Consensus: Adversarial training is the only way to go (?)

0 1 2 3

Distortion

0

20

40

60

80

100

su
cc

es
s

ra
te

(%
)

Madry et al. ≤ = 3.0

Natural

Salman et al. ≤ = 0.05

Salman et al. ≤ = 0.5

ResNet50
Adv. Train [Madry, 18]
Adv. Train [Salman, 20]
Adv. Train [Salmon, 20]  



Where do we stand? Training data confidentiality

• Not reproducible
• Not explainable

Extracting Training Data from Large Language Models

Nicholas Carlini1 Florian Tramèr2 Eric Wallace3 Matthew Jagielski4

Ariel Herbert-Voss5,6 Katherine Lee1 Adam Roberts1 Tom Brown5

Dawn Song3 Úlfar Erlingsson7 Alina Oprea4 Colin Raffel1

1Google 2Stanford 3UC Berkeley 4Northeastern University 5OpenAI 6Harvard 7Apple

Abstract
It has become common to publish large (billion parameter)
language models that have been trained on private datasets.
This paper demonstrates that in such settings, an adversary can
perform a training data extraction attack to recover individual
training examples by querying the language model.

We demonstrate our attack on GPT-2, a language model
trained on scrapes of the public Internet, and are able to extract
hundreds of verbatim text sequences from the model’s training
data. These extracted examples include (public) personally
identifiable information (names, phone numbers, and email
addresses), IRC conversations, code, and 128-bit UUIDs. Our
attack is possible even though each of the above sequences
are included in just one document in the training data.

We comprehensively evaluate our extraction attack to un-
derstand the factors that contribute to its success. Worryingly,
we find that larger models are more vulnerable than smaller
models. We conclude by drawing lessons and discussing pos-
sible safeguards for training large language models.

1 Introduction

Language models (LMs)—statistical models which assign a
probability to a sequence of words—are fundamental to many
natural language processing tasks. Modern neural-network-
based LMs use very large model architectures (e.g., 175 bil-
lion parameters [7]) and train on massive datasets (e.g., nearly
a terabyte of English text [55]). This scaling increases the
ability of LMs to generate fluent natural language [53,74,76],
and also allows them to be applied to a plethora of other
tasks [29, 39, 55], even without updating their parameters [7].

At the same time, machine learning models are notorious
for exposing information about their (potentially private) train-
ing data—both in general [47, 65] and in the specific case of
language models [8, 45]. For instance, for certain models it
is known that adversaries can apply membership inference
attacks [65] to predict whether or not any particular example
was in the training data.

GPT-2

East Stroudsburg Stroudsburg...

Prefix

---  Corporation Seabank Centre
------ Marine Parade Southport
Peter W--------- 
-----------@---.------------.com
+-- 7 5--- 40-- 
Fax: +-- 7 5--- 0--0

Memorized text

Figure 1: Our extraction attack. Given query access to a
neural network language model, we extract an individual per-
son’s name, email address, phone number, fax number, and
physical address. The example in this figure shows informa-
tion that is all accurate so we redact it to protect privacy.

Such privacy leakage is typically associated with overfitting
[75]—when a model’s training error is significantly lower
than its test error—because overfitting often indicates that a
model has memorized examples from its training set. Indeed,
overfitting is a sufficient condition for privacy leakage [72]
and many attacks work by exploiting overfitting [65].

The association between overfitting and memorization has—
erroneously—led many to assume that state-of-the-art LMs
will not leak information about their training data. Because
these models are often trained on massive de-duplicated
datasets only for a single epoch [7, 55], they exhibit little
to no overfitting [53]. Accordingly, the prevailing wisdom has
been that “the degree of copying with respect to any given
work is likely to be, at most, de minimis” [71] and that models
do not significantly memorize any particular training example.
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Where do we stand? Training data confidentiality

• Strong theoretical limitations
• Binary classification
• Homogeneous neural networks (no biases, no residuals)

• Experimental evidence
• On 3-layer MLPs 

(a) Top 24 images reconstructed from a binary classifier trained on 50 CIFAR10 images

(b) Their corresponding nearest neighbours from the training-set of the model

Figure 1: Reconstruction of training images from a pretrained binary classifier, trained on 50 CIFAR10
images. The two classes are “animals” and “vehicles”. We calculate the nearest neighbor using the
SSIM metric.

Our results have potential negative implications on privacy in deep learning. Our scheme can be
viewed as a training-data reconstruction attack, since an adversary might recover sensitive training
data. For example, if a medical device includes a model trained on sensitive medical records, an
adversary might reconstruct this data and thus violate the privacy of the patients. Privacy attacks in
deep learning have been widely studied in recent years (cf. Liu et al. [2021]), but as far as we are
aware, the known attacks cannot reconstruct portions of the training data from a trained model.

Our approach relies on theoretical results about the implicit bias in training neural networks with
gradient-based methods. The implicit bias has been studied extensively in recent years with the
motivation of explaining generalization in deep learning (see Section 2). We use results by Lyu and
Li [2019], Ji and Telgarsky [2020], which establish that, under some technical assumptions, if we
train a neural network with the binary cross entropy loss, its parameters will converge to a stationary
point of a certain margin-maximization problem. This result implies that the parameters of the trained
network satisfy a set of equations w.r.t. the training dataset. In our approach, given a trained network,
we find a dataset that solves this set of equations w.r.t. the trained parameters.

Our Contributions We show that large portions of the training samples are encoded in the parame-
ters of a trained classifier. We also provide a practical scheme to decode the training samples, without
any assumptions on the data. As far as we know, this is the first work that shows that reconstruction
of actual training samples from a trained neural network classifier is possible.

2 Related Work

Understanding and Visualizing what is learnt by Neural Networks. The most common approach
for analysing what is learnt by a neural network is by searching inputs that maximize the class output
or the activations of neurons in intermediate layers [Erhan et al., 2009, Olah et al., 2020]. Oftentimes
this is done via optimization with respect to the model input. Optimizing without any prior on
the input usually results in noise inputs. Therefore, most approaches incorporate priors such as
smoothness regularization or the use of pre-trained image generators [Mahendran and Vedaldi, 2015,
Yosinski et al., 2015, Mordvintsev et al., 2015, Nguyen et al., 2016a,b, 2017] (see Olah et al. [2017]
for a comprehensive summary). Optimization w.r.t. the input may also result in adversarial examples
[Szegedy et al., 2013, Goodfellow et al., 2014]. Recently, [Tsipras et al., 2018, Engstrom et al., 2019]
showed that classifiers trained to be robust to adversarial examples tend to learn representations that
are more aligned with human vision. This was later utilized by [Santurkar et al., 2019, Mejia et al.,
2019] to generate class-conditional images from a trained classifier. While all those approaches
indicate that, unsurprisingly, the learnt representations are strongly correlated with the datasets on
which the model was trained, none of them demonstrate the reconstruction of exact training samples
from the trained models.

Privacy Attacks in Deep Learning. Many methods deal with extracting sensitive information
from trained models. Perhaps the closest to our approach is model-inversion that aims to reconstruct

2

[Reconstructing Training Data from Trained Neural Networks, Haim, NeurIPS’22] 



Where do we stand? Training data confidentiality

• Clear impact of the overfitting
• Outliers in the training set are more easily discovered

[Label-Only Membership Inference Attacks, Choquette-Choo, ICML’21] 

?

Random guess



Security of Machine Learning

• Study the Security of ML before applying ML to Security
• Simple definition

• (Training d., Model, Testing d.)  x  (Confidentiality, Privacy, Integrity, Traceability)
• Almost sound and almost complete

• Where do we stand?
• In the lab!
• In real life: “It depends” 

• As a reader: adversarial reading of adversarial ML papers
• As a writer: be skeptical about your results 

• “the first principle [of research] is that you must not fool yourself—and you are the 
easiest person to fool”. R. Feynman

• Switch your mindset: play the attacker/defender role



3- Case studies



3a- Robustness
Karim Tit et al. 
Efficient Statistical Assessment of Neural Network Corruption Robustness, NeurIPS 2021
Gradient-Informed Neural Network Statistical Robustness Estimation, AISTATS 23



Problem

+ uncertainties
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Problem
Local certification in classification

• Consider 𝑥_ ∈ ℝJ, well classified
argmax

'
𝑓'(𝑥*) = 𝑝𝑎𝑛𝑑𝑎

• Consider two regions
• Input region:  ℐ = { 𝑥 ∈ℝ+ | 𝑑(𝑥, 𝑥*) ≤ 𝜀 } ⊂ ℝ+

• Output region:  𝒪 = { 𝑓 ∈𝕊( |arg max
'
𝑓' = 𝑝𝑎𝑛𝑑𝑎 } ⊂ ℝ(

𝑥*

𝜀

ℐ

ℝ%
𝑓(𝑥*)

𝒪: classified
as panda

ℝ$
𝑓(
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Certification

𝑥*

𝜀

ℐ

ℝ%

𝑝𝑎𝑛𝑑𝑎

𝑖

𝑓(𝑥*)
𝒪

ℝ$
𝑓(ℐ) ⊂ 𝒪

𝑥*

𝜀

ℐ

ℝ%

𝑝𝑎𝑛𝑑𝑎

𝑖

𝑓(𝑥*)
𝒪

ℝ$
𝑓(ℐ) ⊄ 𝒪

Certifie
d

Not certifie
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Formal proof

𝑥*

𝜀ℝ$
Non Linear Non Linear

Linear Linear Linear

𝑦 = 𝜎(𝑥)
Non linear
activation function

NP hard problem

𝑥 𝑓(𝑥)

Linear LinearNon Linear Non Linear Linear



Formal proof with relaxation

𝑥*

𝜀ℝ$

𝑥 𝑓(𝑥)

Linear LinearNon Linear Non Linear Linear

Non Linear Non Linear

Linear Linear Linear

𝑦 = 𝜎(𝑥)
Non linear
activation function

False negative



Formal proof
• Sound and complete (but not scalable)

• ReLUplex, Katz et al., Computer Aided Verification 2017

• Relaxation (not complete) but more scalable
• Crown, Zhang et al., NeurIPS 2018
• CNN-CERT, Weng et al., AAAI 2019
• DeepPoly, Singh et al., Programming Languages, 2019
• Fast-Lin, Weng et al., ICML 2018 (backward)

Since formal methods are not so formal, let us try a statistical approach



Our approach:  statistical certification
• Assume a statistical distribution of the input

For example, 𝑋~𝒰(ℐ)
• Define probability of failure

𝑝 = ℙ[ 𝑓 𝑋 ∉ 𝒪 ]
• Hypothesis Testing wrt 𝑝E critical level set by the user
• H0: 𝑝 > 𝑝! Do not certify
• H1: 𝑝 < 𝑝! Certify

• Run a statistical simulation and decide upon its random result
• 2 types of errors

• False Positive: Certify whereas 𝑝 > 𝑝!
• False Negative: Do not certify whereas 𝑝 < 𝑝!

𝑥*

𝜀

ℐ



Which statistical simulation?
• Monte Carlo

• Randomly draw 𝑁 samples 𝑋" = 𝑥# + 𝑈" and count the number of adv. examples
• Pros: Any distribution
• Cons: 𝑁 = 𝑂(1/𝑝!)

• Rare event simulation
• FORM, SORM, Importance Sampling, Importance Splitting, …
• We are inspired from Last Particle algorithm [Guyader et al., 2011]
• Pros: Any distribution, control over FPR <  𝛼
• Complexity = 𝑂(log(1/𝑝!))

𝑥*
𝜀

ℓ? norm

𝑥*
𝜀

ℓ" norm IID Gaussian

𝑥* 𝑥*

colored Gaussian



Connection with ML

𝒙
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𝐿 𝑥 := max
FGF!

𝑓F(𝑥) − 𝑓F!(𝑥)

This quantity tells how close the 
uncertainties are to delude the classifier

𝐿 𝑥 > 0

𝑋 = 𝑥* + 𝑈 𝑉 = 𝐿 𝑋 𝑝 = ℙ[𝑉 > 0] < 𝑝(
?

Sample 𝑈



The Last Particle applied to ML

𝑥*

Randomly draw 𝑁 samples
𝑋' = 𝑥* + 𝑈'

Compute scores
𝐿 𝑋$ , …, 𝐿 𝑋,

Find minimum
𝑖∗ = argmin 𝐿(𝑋')

Define threshold 
𝑆 ⟵ 𝐿 𝑋'∗

Replace with one fresh particle
𝑋'∗ ⟵ 𝑥* + 𝑈  such that 𝐿 𝑋'∗ > 𝑆 
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pe

at
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+
+

+

++X

+

𝐿 𝑥 = 𝑠#

𝐿 𝑥 = 𝑠"

𝐿 𝑥 = 0

𝜀

A Appendix: Approximations for the computation of m

Providing a very low critical probability pc means that certification occurs when the simulation
ends after a large number of iterations m. ⇤(Lm) follows a Gamma distribution �(m,N) which
can be then approximated by the Gaussian law N (m/N;m/N2) (application of the Central Limit
Theorem). We introduce `c the threshold associated to pc s.t. pc = P(h(X) > `c), and mc =
log(pc)/ log(1� 1/N).

Under this assumption:

P(⇤(Lm) < ⇤(`c)) = ↵ ! ⇤(`c) =
m

N
� z↵

p
m

N
(15)

with z↵ = ��1(1� ↵) > 0 for ↵ < 1/2 and ⇤(`c) = � log(pc). We find a first approximation of m
by solving this second order polynomial in

p
m:

m ⇡ m̃1 =

⇠
1

4

⇣
z↵ +

p
z2↵ � 4N log(pc)

⌘2
⇡
. (16)

This clearly shows that the dependence on pc is approximately logarithmic. Table 5 shows that this
approximation is excellent even for large pc.

Moreover, if N is large enough, then N log(pc) = Nmc log(1� 1/N) ⇡ mc and m approximately
satisfies

m� z↵
p
m�mc = 0, (17)

producing

m ⇡ m̃2 =

⇠
1

4

⇣
z↵ +

p
z2↵ + 4mc

⌘2
⇡
=

&
mc

✓p
1 + z2↵/4mc +

z↵
2
p
mc

◆2
'
. (18)

This shows that m is a little larger than mc = log(pc)/log(1�1/N).

B Experiments in the idealized case

This appendix details the experimental results of Sect. 5.1. This section assumes that X = xo + �X̃
with X̃ ⇠ N (0n; In) and that h(x) = x>g� ⌧ with g 2 Rn and kgk = 1 (w.l.o.g.). In this textbook
case, the true probability p = ⇡0(h(X) > 0) depends on ⌧ by

p = 1� �

✓
⌧ � x>

o g

�

◆
. (19)

We now explain how to ‘directly’ sample a new particle as required by line 11, Alg. 1 for this
particular case, without resorting to Alg. 2.

The projection of X̃ onto g is Gaussian distributed. By linearity of the score function, conditioning
on the event E := {h(X) > L} means that the c.d.f of Z := X̃>g equals:

FZ(z) = 1(z > L0).
�(z)� �(L0)

1� �(L0)
with L0 := (L�x>

o g)/�. (20)

On the other hand, the projection of X̃ onto any other direction orthogonal to g remains normal
distributed. This justifies the following construction:

Z = F�1
Z (U) = ���1 ((1� �(L0/�))U + �(L0/�)) with U ⇠ U[0,1] (21)

X = xo + �
�
Zg + (In � gg>)N

�
with N ⇠ N (0n; In), (22)

In a nutshell, (In � gg>) is the projection onto the (n � 1)-dimension subspace orthogonal to g.
This operator resets the projection of N onto g, which is then set to Z. Section 5.1 uses this toy
example to illustrate our procedure in the idealized case.
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Experimental results: ACAS-Xu
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Figure 1: Estimated probabilities of false positive, false negative, and not sound certification, vs. true
violation probability p in the ideal setup where pc = 10�30, ↵ = 0.01. Estimation over 1000 runs.
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Figure 2: ACAS Xu – runtimes of ERAN [DeepPoly+MILP] and Last Particle [N = 2, pc =
10�50, t = 40]

compress a large lookup table (2GB) containing discrete decisions (’Clear-of-conflicts’, ’weak right’,242

’strong right’,’weak left’, or ’strong left’) as well as 5 input/output properties. This makes 45⇤5 = 225243

cases. We compare our method with the complete certification based on DeepPoly [Singh et al.,244

2019] and Mixed-Integer Programming from the ERAN benchmark.245

Table 2 contains the confusion matrix taking into account the cases for which the ERAN complete246

certification fails because the Gurobi optimizer either outputs an ‘infeasible’ status or reaches a247

timeout (set to 600 seconds). Unsurprisingly, our method is complete in the sense that it certifies248

all cases certified by ERAN. It is not sound as it admits 9 false positives. This is due to the critical249

probability pc which is not low enough (the decisions were exactly the same over 10 runs). Yet, our250

method takes a decision on the 6 unsolved cases by ERAN. Among them, 4 are uncertified because251

our method succeeds to find a violation. In addition our method is faster for all ACAS Xu properties252

except for the property 4.253

Table 2: ACAS Xu – Confusion matrix comparing ERAN [DeepPoly+MILP] and Last Particle
[N = 2, pc = 10�50, t = 40]

ERAN

Certified Uncertified Infeasible TimeOut

Last Particle Certified 107 9 1 1
Uncertified 0 103 4 0
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method takes a decision on the 6 unsolved cases by ERAN. Among them, 4 are uncertified because251

our method succeeds to find a violation. In addition our method is faster for all ACAS Xu properties252
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Table 2: ACAS Xu – Confusion matrix comparing ERAN [DeepPoly+MILP] and Last Particle
[N = 2, pc = 10�50, t = 40]

ERAN

Certified Uncertified Infeasible TimeOut

Last Particle Certified 107 9 1 1
Uncertified 0 103 4 0
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Experimental results: ImageNet

No large scale result in formal proof literature on such big input data / model

Table 3: MNIST – Comparison ERAN [DeepPoly] and Last Particle [N = 2, pc = 10�35,t = 40]

ERAN Last Particle

✏ Certified (%) runtime (sec.) Certified (%) runtime (sec.)

0.015 82 5.69 99 1.04 ± 0.005
0.03 62 5.92 97 1.03 ± 0.01
0.06 28 8.13 93 1.00 ± 0.01
0.1 22 8.84 85 0.96 ± 0.02

Table 4: ImageNet - Last Particle [N = 2, pc = 10�15, t = 20]

Network ✏ Avg. runtime (in sec. ±std) Avg. number of calls Certified (%)

MobileNet
0.02 20.78± 0.74 1388 71
0.03 18.74± 0.18 1274 64
0.06 14.5± 0.11 1037 50

ResNet50
0.02 33.86± 1.14 1537 81
0.03 31.38± 0.48 1434 71
0.06 25.51± 0.67 1160 59

5.3 MNIST254

We compare our procedure with with the DeepPoly incomplete certification on MNIST [LeCun et al.,255

1990] with 4 neural networks from the ERAN benchmark (see App. F.3). We focus on L1 uniform256

robustness since the implementation provided for DeepPoly cannot deal with L2 norms. We run257

our algorithm with N = 2, pc = 10�35 and t = 40. As in ACAS Xu experiment, our method runs258

faster than the ERAN method as shown in table 3. Interestingly, the average runtime of our method259

decreases with larger ✏ since the probability p of violation is bigger, whereas DeepPoly computation260

time increases with the size of the input space tested. On the one hand DeepPoly provides an efficient261

lower bound to both corruption and adversarial robustness, on the other hand our method provides a262

fast upper bound. 10 independent LP simulations (runs) on the same image always give the same263

output and the standard deviation is thus empirically negligible in our setting.264

5.4 ImageNet265

For the last experiment, our method analyses 2 neural networks (ResNet50 et MobileNet) with 100266

test images from ImageNet dataset [Deng et al., 2009] correctly classified by each network. These267

experiments were run on a Nvida V100 GPU. The average number of calls reported is rounded up268

and the average runtime is for a pass over one image. The robustness is again defined against noise269

uniformly distributed over L1 of radius ". As one can notice, the compute time decreases with ".270

6 Conclusion271

The paper proposes a statistical simulation to make assessment on corruption robustness. It looks272

at this problem from a hypothesis testing (false positive/ false negative) and from a certification273

(completeness / soundness) points of view. The procedure is scalable, efficient, complete and comes274

with guarantees on the lack of soundness. There are two limitations:275

• The Last Particle simulation is sequential, which is not GPU friendly. Yet, we provide a276

code processing several inputs xo in parallel.277

• Our procedure is general as it uses the network as a black-box classifier. But, it does not278

exploit its gradient easily computed thanks to backpropagation. More sophisticated mixing279

kernels using gradients information (e.g. Langevin Monte Carlo, Hamiltonian MC) can be280

used to accelerate convergence. This our next step forward.281
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Robustness

• DNN classifiers are extremely robust
• Locally robust
• But it is not trivial to certify this property

• Does it matter?
• Misclassification rate: ACAS-Xu ≈	1%  / ImageNet ≈	20%  
• Impossible to derive how to improve robustness

• And yet, they are vulnerable…



3b- Adversarial examples
Security ≠ Robustness



Motivations: false sense of security

• Generalization ≠ Robustness ≠ Security

• Generalization: To operate as expected on unseen data
• Robustness:  To operate as expected on noisy data
• Security: To operate as expected on purposely perturbed data 



Security ≠ Robustness

original noise JPEG black-box white-box

nail
0

enveloppe
84.9

bulletproof_vest
28.8

paintbrush
6.6

mantis
0.2

Prediction
Distortion

Robustness Security



Security ≠ Robustness

original noise JPEG black-box white-box

prayer_rug
0

lighter
79.1

loudspeaker
42.0

quilt
19.2

safe
0.5

Prediction
Distortion

Robustness Security



Security ≠ Robustness

original noise JPEG black-box white-box

Lawn_mower
0

projector
73.2

joystick
14.5

vacuum
4.5

rifle
0.14

Prediction
Distortion

Robustness Security



Methodology

gibbon+ 𝜖 ∗ =giant panda

Optimal untargeted adversarial example
𝒙y∗ = arg min

5z(𝒙){|}~�}
𝑑(𝒙, 𝒙_)

Design an attack

𝒙y = 𝐴(𝒙_, 𝜃, 𝜑) as close as possible to        𝒙y∗

attack parameters

DNN model

original image

𝒙* 𝒙9

attack algorithm



Methodology

• Best effort
• Find the right parameters for each image

𝜑∗ = argmin 𝑑(𝐴 𝒙#, 𝜃, 𝜑 , 𝒙#)

• Operating curve
• Attack a set of 𝑛 images, sort the distortions

𝑑% ≤ 𝑑& ≤ ⋯ ≤ 𝑑'

• Plot one of these functions
• Attack Success Rate 𝑃 𝐷 = +

,
∑[𝑑- ≤ 𝐷] 

• Adversarial accuracy 𝑎𝑐𝑐 𝐷 = 1 − 𝑃 𝐷



Methodology
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Fair comparison

CW (400)
PGD (100)
BP (50)

ResNet50 Vanilla
ResNet50 Robust

𝐷

acc(𝐷)

Best effort + Operating curve
• Attacks of different nature

• Distortion vs. Success oriented
• White vs. Black attacks

• Different models
• with/without defenses

Problem: High complexity due the best effort mode
• We need fast and powerful attacks:

1. Successful (almost surely)
2. Low distortion
3. Few parameters (or parameters free)
4. Fast



How white-box attacks work?

Attack

𝒙* 𝐿(𝒙*) > 0
𝑃[𝑦 = 1]
𝑃[𝑦 = 2]

𝑃[𝑦 = 𝐶]
…

369 388 …
Adv. loss

𝐿 𝒙* > 0

Adv. loss
369 388 …

𝐿 𝒙9 < 0
𝒙9 𝐿(𝒙9) < 0

𝑃[𝑦 = 1]
𝑃[𝑦 = 2]

𝑃[𝑦 = 𝐶]
…

𝐿 𝒙 = 𝑃[𝑦Y] − max
FGF!

𝑃[𝑦] & ∇𝐿 𝒙 (by autodiff / backpropagation)

Fast attack = Few gradient computations



How white-box attacks work?

• Optimal untargeted adversarial example
𝒙Z∗ = arg min

\ 𝒙 ^_
𝑑(𝒙, 𝒙Y)

• Example: Lagrangian formulation [Carlini&Wagner, IEEE S&P, 2017]

𝐽(𝒙, 𝜆) = 𝑑(𝒙, 𝒙Y)+ 𝜆 𝐿 𝒙
• 2 nested loops

• Line search over 𝜆
• Use for preferred solver using ∇𝐽 𝒙, 𝜆

𝒙.
∗ = arg min 𝑑(𝒙, 𝒙*)+ 𝜆 𝐿 𝒙

• If 𝐿 𝒙.
∗ > 0 , then increase 𝜆 

• If 𝐿 𝒙.∗ < 0 , then decrease 𝜆 



BP - Boundary Projection

Parameter = number of  iterations
Best performance within ~50 iterations

Algorithm
• Stage 1: Fast & Furious

• Go out as quickly as possible
• Gradient descent with increasing step size

• Stage 2: Nice & Gentle (inspired by Statistical Reliability method HL-RF)
• OUT: decrease distortion while maintaining the loss
• IN: decrease the loss while (almost) maintaining the distortion

x

Walking on the Edge: Fast, Low-Distortion Adversarial Examples, Hanwei Zhang et al., IEEE TIFS 2020
Structural reliability under combined random load sequences, Rackwitz, Fiessler, Comp. Struct. 1978

𝑥*
∇𝐿 𝑥 1

𝑥 1
𝑥(1B#)



The deep scam?

Illustration of adversarial images … are not often adversarial!

• Unbundle the .pdf to retrieve the image files… as generated by the authors
(not a bad quality screenshot)

• Use the ‘same’ network (pytorch) as the authors

giant panda
60%+ 𝜖 ∗ =

giant panda
69%

«Explaining and Harnessing Adversarial Examples» Goodfellow, Szegedy, et al., early 2015



The deep scam?
Illustration of adversarial images … are not always adversarial!

+ 𝜖 ∗

+ 𝜖 ∗

+ 𝜖 ∗

=

=

=

632: ‘loudspeaker’
58%

779: ’school bus’
51%

155: ‘pekinese’
61%

632: ‘loudspeaker’
34%

779: ’school bus’
45%

155: ‘pekinese’
82%

« Intriguing properties of neural networks » Szegedy, Goodfellow et al., early 2014



Rounding destroys perturbations 
• Reverse the pre-processing and round: 0,1 b ⟶ 0,1,… , 255 b

𝐼Z = 255 ∗ 𝑥Z = 255 ∗ (𝑥Y + 𝑝) = 𝐼Y + 255 ∗ 𝑝

• Rounding is quantizing with step Δ = 1
Denote perturbation power 𝑃�� = 255 ∗ 𝑝 ]/𝑛

• High-resolution regime 𝑃�� ≫ Δ]
𝑃_�� = 𝑃�� + Δ]/12

• Low-resolution regime
𝑃_�� < 𝑃��

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Perturbation power before quantizing

Perturbation power after quantizing
Δ"/12



Our goal
How to get a real image 𝐼c from 𝑥Z ?

Assumption
• 𝑥y adversarial tensor forged by any attack in  0,1 J

Goal
• Minimize Euclidian distortion from the original image

Constraints
• 𝐼� is a real image (8bits PNG 0,1, … , 255 J or JPEG encoded)
• 𝐼� is adversarial

What if Adversarial Samples were Digital Images?, Benoît Bonnet et al. - IH&MMSEC 2020
Generating Adversarial Images in Quantized Domains, Benoit Bonnet et al. IEEE Trans. on IFS 2022 



Question

Does the integral constraint (make an image) change the game?



Operating characteristic
2 models
• ResNet50 Vanilla
• ResNet50 Robust

1 attack
• BP

3 modes
• Unquantized
• Smart quantization
• Naïve rounding

Answer: No, but you need to be careful!

𝐷

𝑃(𝐷)

Unquantized

Quantized

Rounding
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How black-box attacks work?

𝒙* 5𝑦(()
𝑃(𝑦 = 1)
𝑃(𝑦 = 2)

𝑃(𝑦 = 𝐶)
…+

Generate new perturbation
𝒑 G , 5𝑦 G , 1 ≤ 𝑗 ≤ 𝑖 − 1𝒑 (

predicted label

𝒙!

line search

𝒙!

gradient estimate

𝒙!

jump

Hop Skip Jump Attack, J. Chen, M. Jordan, M. Wainwright, IEEE S&P 2020
GeoDA, A. Rahmati, S.-M. Moosavi-Dezfooli, P. Frossard, H. Dai, CVPR 2020
QEBA,  H. Li, X. Xu, X. Zhang, S. Yang, B. Li, CVPR 2020 



Queries

Di
st

or
tio

n



SurFree: Random Coordinate Descent

1. Pick a random direction 𝒗 ⊥ 𝒖
We now look for a closer adv. in (𝒙Y , 𝒖, 𝒗)

2. Draw the green circle

3. Find the direction by probing small steps

4. Line Search over the circle to find the 
intersection with the boundary

𝒙*

𝒙/

𝒖

𝒗

𝒙/

Property: Convergence to the global minimum if the boundary is flat



SurFree: fast BB attack

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

CVPR
#****

CVPR
#****

CVPR 2021 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

target K = 500 queries K = 1, 000 queries K = 2, 000 queries
dt HSJA [3] GeoDA [22] QEBA [13] SurFree HSJA [3] GeoDA [22] QEBA [13] SurFree HSJA [3] GeoDA [22] QEBA [13] SurFree
30 0.56 0.79 0.71 0.90 0.88 0.93 0.88 0.96 0.98 0.96 0.97 0.99

10 0.13 0.25 0.32 0.44 0.23 0.52 0.46 0.57 0.40 0.70 0.69 0.73

5 0.07 0.14 0.17 0.23 0.09 0.21 0.30 0.31 0.13 0.39 0.47 0.50

Table 2. Success rate S(dt,K) for achieving a targeted distortion dt under a limited query budget K (ImageNet).

attack K = 100 K = 500 K = 1000 K = 100 K = 500 K = 1000 K = 100 K = 500 K = 1000

SurFree
amer. dipper- 2.6 amer. dipper- 1.3 amer. dipper- 0.9 stone wall- 14.9 stone wall- 8.7 stone wall- 5.4 cliff dwelling- 21.9 cliff dwelling- 18.4 triceratops- 13.5

QEBA [13]
stingray- 60.6 stingray- 33.7 stingray- 20.8 stone wall- 25.2 stone wall- 4.8 stone wall- 2.6 wombat- 58.3 wombat- 24.3 wombat- 13.6

GeoDA [22]
brambling- 18.9 brambling- 9.7 brambling- 5.8 stone wall- 15.8 megalith- 4.5 megalith- 2.6 armadillo- 49.4 tusker- 31.3 tusker- 18.9

Table 3. Visual trajectories for an easy (chickadee), a medium (king penguin), and a difficult image (warthog) - predicted label and distortion

corresponding papers. SurFree dives significantly faster
than all attacks to lower distortions (most notably from 1
to 750 queries), while QEBA [13] prevails at around 3, 750
queries. Note that SurFree is also first with DCT full but
for a shorter period (⇡ 800 queries). For completeness,
here are the scores at 10,000 queries: 2.09 (QEBA [13]) <
2.72 (SurFree) < 3.48 (HSJA 10) < 4.63 (GeoDA [22]).
Although a small query budget drives its design, SurFree
is not off in the long run. Similar results are observed for
MNIST (in the pixel domain, without dimension reduction)
where SurFree is ahead up to ⇡ 5, 000 queries.

Performance evaluation: Success rate We now consider
three query budgets, K 2 {500, 1, 000, 2, 000}, which are

0 10 20 30 40 50 60
Distortion

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

R
at

e

SurFree

GeoDA [22]
QEBA [13]
10-HSJA [3]
100-HSJA [3]

Figure 7. Success rate S(dt,K) (10) vs. target distortion dt with
K = 500 queries over ImageNet.

rather low with regards to the state-of-the-art (see Sect. 2.2).
Table 2 details how the success rate S(dt,K) varies for

some setup (dt,K) (10). Fig. 7 shows the success rate
S(dt, 500) increase with dt. GeoDA [22] is superior to
QEBA [13] for large target distortions only. Both schemes
outperform HSJA [3]. SurFree remains the best attack
for any target distortion up to this 2, 000 query budget.

Finally, Table 3 displays the visual trajectories of three
attacked images witnessed as easy, medium, and difficult to
attack for SurFree. While all three attacks affect differ-
ently the images, SurFree gives relatively less annoying
artefacts. We also note a drawback of QEBA [13]: the adver-
sarials often keep the label of the random starting point (e.g.
stingray), hence sometimes converging to a local minimum
which is far from the optimal solution (1).

7. Conclusion

The performance of black box decision-based attacks re-
veals important gaps when it comes to the required amount
of queries. Core to the three state-of-the-art approaches this
papers considers is the estimation of gradients. This step
is particularly costly, with regards to our novel geometri-
cal attack SurFree. The trial of multiple directions to-
gether with a simple mechanism getting the best distortion
decrease along a given direction allow a fast convergence
to qualitative adversarials, within an order of hundreds of
queries solely. This sets a new stage for future works.
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Conclusion on adversarial examples

• Defenses
• All are broken except adversarial training

• Inclusion of adversarial examples in the training set
• High complexity, instability, loss of accuracy

• Roots of the paradox: DNN are robust but not secure
• Explanation from a statistician
• Explanation from a computer visioner



Adversarial training



Adversarial training
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Conclusion on adversarial examples

• Defenses
• All are broken except adversarial training

• Include adversarial examples in the training set
• High complexity, instability, loss of accuracy

• Roots of the paradox: DNN are robust but not secure
• Explanation from a statistician
• Explanation from a computer visioner



Explanation #1: Statistics
« Adversarial examples = imperfect classifier +  concentration phenomenon »

misclassified examples

adversarial examples
𝒙9 − 𝒙* ≤ 𝜖

Classifier A is less accurate than Classifier B
is more relatively secure than

x9x2



Explanation #2: Computer vision
“DNNs peforms as well as humans but do not see as humans”
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ABSTRACT

Convolutional Neural Networks (CNNs) are commonly thought to recognise ob-
jects by learning increasingly complex representations of object shapes. Some
recent studies suggest a more important role of image textures. We here put these
conflicting hypotheses to a quantitative test by evaluating CNNs and human ob-
servers on images with a texture-shape cue conflict. We show that ImageNet-
trained CNNs are strongly biased towards recognising textures rather than shapes,
which is in stark contrast to human behavioural evidence and reveals fundamen-
tally different classification strategies. We then demonstrate that the same standard
architecture (ResNet-50) that learns a texture-based representation on ImageNet
is able to learn a shape-based representation instead when trained on ‘Stylized-
ImageNet’, a stylized version of ImageNet. This provides a much better fit for
human behavioural performance in our well-controlled psychophysical lab setting
(nine experiments totalling 48,560 psychophysical trials across 97 observers) and
comes with a number of unexpected emergent benefits such as improved object
detection performance and previously unseen robustness towards a wide range of
image distortions, highlighting advantages of a shape-based representation.

(a) Texture image
81.4% Indian elephant
10.3% indri

8.2% black swan

(b) Content image
71.1% tabby cat
17.3% grey fox

3.3% Siamese cat

(c) Texture-shape cue conflict
63.9% Indian elephant
26.4% indri

9.6% black swan

Figure 1: Classification of a standard ResNet-50 of (a) a texture image (elephant skin: only texture
cues); (b) a normal image of a cat (with both shape and texture cues), and (c) an image with a
texture-shape cue conflict, generated by style transfer between the first two images.

⇤Joint senior authors
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Figure 2: Accuracies and example stimuli for five different experiments without cue conflict.

changing biases, and discovering emergent benefits of changed biases. We show that the texture bias
in standard CNNs can be overcome and changed towards a shape bias if trained on a suitable data
set. Remarkably, networks with a higher shape bias are inherently more robust to many different
image distortions (for some even reaching or surpassing human performance, despite never being

trained on any of them) and reach higher performance on classification and object recognition tasks.

2 METHODS

In this section we outline the core elements of paradigm and procedure. Extensive details to facilitate
replication are provided in the Appendix. Data, code and materials are available from this repository:
https://github.com/rgeirhos/texture-vs-shape

2.1 PSYCHOPHYSICAL EXPERIMENTS

All psychophysical experiments were conducted in a well-controlled psychophysical lab setting and
follow the paradigm of Geirhos et al. (2018), which allows for direct comparisons between human
and CNN classification performance on exactly the same images. Briefly, in each trial participants
were presented a fixation square for 300 ms, followed by a 300 ms presentation of the stimulus
image. After the stimulus image we presented a full-contrast pink noise mask (1/f spectral shape)
for 200 ms to minimise feedback processing in the human visual system and to thereby make the
comparison to feedforward CNNs as fair as possible. Subsequently, participants had to choose one
of 16 entry-level categories by clicking on a response screen shown for 1500 ms. On this screen,
icons of all 16 categories were arranged in a 4⇥ 4 grid. Those categories were airplane, bear,
bicycle, bird, boat, bottle, car, cat, chair, clock, dog, elephant, keyboard,
knife, oven and truck. Those are the so-called “16-class-ImageNet” categories introduced in
Geirhos et al. (2018).

The same images were fed to four CNNs pre-trained on standard ImageNet, namely AlexNet
(Krizhevsky et al., 2012), GoogLeNet (Szegedy et al., 2015), VGG-16 (Simonyan & Zisserman,
2015) and ResNet-50 (He et al., 2015). The 1,000 ImageNet class predictions were mapped to the
16 categories using the WordNet hierarchy (Miller, 1995)—e.g. ImageNet category tabby cat

would be mapped to cat. In total, the results presented in this study are based on 48,560 psy-
chophysical trials and 97 participants.

2.2 DATA SETS (PSYCHOPHYSICS)

In order to assess texture and shape biases, we conducted six major experiments along with three
control experiments, which are described in the Appendix. The first five experiments (samples
visualised in Figure 2) are simple object recognition tasks with the only difference being the image
features available to the participant:

Original 160 natural colour images of objects (10 per category) with white background.
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matthias.bethge@bethgelab.org

Felix A. Wichmann
⇤

University of Tübingen
felix.wichmann@uni-tuebingen.de

Wieland Brendel
⇤

University of Tübingen
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ABSTRACT

Convolutional Neural Networks (CNNs) are commonly thought to recognise ob-
jects by learning increasingly complex representations of object shapes. Some
recent studies suggest a more important role of image textures. We here put these
conflicting hypotheses to a quantitative test by evaluating CNNs and human ob-
servers on images with a texture-shape cue conflict. We show that ImageNet-
trained CNNs are strongly biased towards recognising textures rather than shapes,
which is in stark contrast to human behavioural evidence and reveals fundamen-
tally different classification strategies. We then demonstrate that the same standard
architecture (ResNet-50) that learns a texture-based representation on ImageNet
is able to learn a shape-based representation instead when trained on ‘Stylized-
ImageNet’, a stylized version of ImageNet. This provides a much better fit for
human behavioural performance in our well-controlled psychophysical lab setting
(nine experiments totalling 48,560 psychophysical trials across 97 observers) and
comes with a number of unexpected emergent benefits such as improved object
detection performance and previously unseen robustness towards a wide range of
image distortions, highlighting advantages of a shape-based representation.

(a) Texture image
81.4% Indian elephant
10.3% indri

8.2% black swan

(b) Content image
71.1% tabby cat
17.3% grey fox

3.3% Siamese cat

(c) Texture-shape cue conflict
63.9% Indian elephant
26.4% indri

9.6% black swan

Figure 1: Classification of a standard ResNet-50 of (a) a texture image (elephant skin: only texture
cues); (b) a normal image of a cat (with both shape and texture cues), and (c) an image with a
texture-shape cue conflict, generated by style transfer between the first two images.
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Convolutional Neural Networks (CNNs) are commonly thought to recognise ob-
jects by learning increasingly complex representations of object shapes. Some
recent studies suggest a more important role of image textures. We here put these
conflicting hypotheses to a quantitative test by evaluating CNNs and human ob-
servers on images with a texture-shape cue conflict. We show that ImageNet-
trained CNNs are strongly biased towards recognising textures rather than shapes,
which is in stark contrast to human behavioural evidence and reveals fundamen-
tally different classification strategies. We then demonstrate that the same standard
architecture (ResNet-50) that learns a texture-based representation on ImageNet
is able to learn a shape-based representation instead when trained on ‘Stylized-
ImageNet’, a stylized version of ImageNet. This provides a much better fit for
human behavioural performance in our well-controlled psychophysical lab setting
(nine experiments totalling 48,560 psychophysical trials across 97 observers) and
comes with a number of unexpected emergent benefits such as improved object
detection performance and previously unseen robustness towards a wide range of
image distortions, highlighting advantages of a shape-based representation.

(a) Texture image
81.4% Indian elephant
10.3% indri

8.2% black swan

(b) Content image
71.1% tabby cat
17.3% grey fox

3.3% Siamese cat

(c) Texture-shape cue conflict
63.9% Indian elephant
26.4% indri

9.6% black swan

Figure 1: Classification of a standard ResNet-50 of (a) a texture image (elephant skin: only texture
cues); (b) a normal image of a cat (with both shape and texture cues), and (c) an image with a
texture-shape cue conflict, generated by style transfer between the first two images.
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Explanation #2: Computer vision

ImageNet-trained CNNS are biased towards texture…, Geirhos et al., ICLR 2019
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trained CNNs are strongly biased towards recognising textures rather than shapes,
which is in stark contrast to human behavioural evidence and reveals fundamen-
tally different classification strategies. We then demonstrate that the same standard
architecture (ResNet-50) that learns a texture-based representation on ImageNet
is able to learn a shape-based representation instead when trained on ‘Stylized-
ImageNet’, a stylized version of ImageNet. This provides a much better fit for
human behavioural performance in our well-controlled psychophysical lab setting
(nine experiments totalling 48,560 psychophysical trials across 97 observers) and
comes with a number of unexpected emergent benefits such as improved object
detection performance and previously unseen robustness towards a wide range of
image distortions, highlighting advantages of a shape-based representation.

(a) Texture image
81.4% Indian elephant
10.3% indri

8.2% black swan

(b) Content image
71.1% tabby cat
17.3% grey fox

3.3% Siamese cat

(c) Texture-shape cue conflict
63.9% Indian elephant
26.4% indri

9.6% black swan

Figure 1: Classification of a standard ResNet-50 of (a) a texture image (elephant skin: only texture
cues); (b) a normal image of a cat (with both shape and texture cues), and (c) an image with a
texture-shape cue conflict, generated by style transfer between the first two images.

⇤Joint senior authors
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Figure 2: Accuracies and example stimuli for five different experiments without cue conflict.

changing biases, and discovering emergent benefits of changed biases. We show that the texture bias
in standard CNNs can be overcome and changed towards a shape bias if trained on a suitable data
set. Remarkably, networks with a higher shape bias are inherently more robust to many different
image distortions (for some even reaching or surpassing human performance, despite never being

trained on any of them) and reach higher performance on classification and object recognition tasks.

2 METHODS

In this section we outline the core elements of paradigm and procedure. Extensive details to facilitate
replication are provided in the Appendix. Data, code and materials are available from this repository:
https://github.com/rgeirhos/texture-vs-shape

2.1 PSYCHOPHYSICAL EXPERIMENTS

All psychophysical experiments were conducted in a well-controlled psychophysical lab setting and
follow the paradigm of Geirhos et al. (2018), which allows for direct comparisons between human
and CNN classification performance on exactly the same images. Briefly, in each trial participants
were presented a fixation square for 300 ms, followed by a 300 ms presentation of the stimulus
image. After the stimulus image we presented a full-contrast pink noise mask (1/f spectral shape)
for 200 ms to minimise feedback processing in the human visual system and to thereby make the
comparison to feedforward CNNs as fair as possible. Subsequently, participants had to choose one
of 16 entry-level categories by clicking on a response screen shown for 1500 ms. On this screen,
icons of all 16 categories were arranged in a 4⇥ 4 grid. Those categories were airplane, bear,
bicycle, bird, boat, bottle, car, cat, chair, clock, dog, elephant, keyboard,
knife, oven and truck. Those are the so-called “16-class-ImageNet” categories introduced in
Geirhos et al. (2018).

The same images were fed to four CNNs pre-trained on standard ImageNet, namely AlexNet
(Krizhevsky et al., 2012), GoogLeNet (Szegedy et al., 2015), VGG-16 (Simonyan & Zisserman,
2015) and ResNet-50 (He et al., 2015). The 1,000 ImageNet class predictions were mapped to the
16 categories using the WordNet hierarchy (Miller, 1995)—e.g. ImageNet category tabby cat

would be mapped to cat. In total, the results presented in this study are based on 48,560 psy-
chophysical trials and 97 participants.

2.2 DATA SETS (PSYCHOPHYSICS)

In order to assess texture and shape biases, we conducted six major experiments along with three
control experiments, which are described in the Appendix. The first five experiments (samples
visualised in Figure 2) are simple object recognition tasks with the only difference being the image
features available to the participant:

Original 160 natural colour images of objects (10 per category) with white background.
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ABSTRACT

Convolutional Neural Networks (CNNs) are commonly thought to recognise ob-
jects by learning increasingly complex representations of object shapes. Some
recent studies suggest a more important role of image textures. We here put these
conflicting hypotheses to a quantitative test by evaluating CNNs and human ob-
servers on images with a texture-shape cue conflict. We show that ImageNet-
trained CNNs are strongly biased towards recognising textures rather than shapes,
which is in stark contrast to human behavioural evidence and reveals fundamen-
tally different classification strategies. We then demonstrate that the same standard
architecture (ResNet-50) that learns a texture-based representation on ImageNet
is able to learn a shape-based representation instead when trained on ‘Stylized-
ImageNet’, a stylized version of ImageNet. This provides a much better fit for
human behavioural performance in our well-controlled psychophysical lab setting
(nine experiments totalling 48,560 psychophysical trials across 97 observers) and
comes with a number of unexpected emergent benefits such as improved object
detection performance and previously unseen robustness towards a wide range of
image distortions, highlighting advantages of a shape-based representation.

(a) Texture image
81.4% Indian elephant
10.3% indri

8.2% black swan

(b) Content image
71.1% tabby cat
17.3% grey fox

3.3% Siamese cat

(c) Texture-shape cue conflict
63.9% Indian elephant
26.4% indri

9.6% black swan

Figure 1: Classification of a standard ResNet-50 of (a) a texture image (elephant skin: only texture
cues); (b) a normal image of a cat (with both shape and texture cues), and (c) an image with a
texture-shape cue conflict, generated by style transfer between the first two images.

⇤Joint senior authors
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Figure 2: Accuracies and example stimuli for five different experiments without cue conflict.

changing biases, and discovering emergent benefits of changed biases. We show that the texture bias
in standard CNNs can be overcome and changed towards a shape bias if trained on a suitable data
set. Remarkably, networks with a higher shape bias are inherently more robust to many different
image distortions (for some even reaching or surpassing human performance, despite never being

trained on any of them) and reach higher performance on classification and object recognition tasks.

2 METHODS

In this section we outline the core elements of paradigm and procedure. Extensive details to facilitate
replication are provided in the Appendix. Data, code and materials are available from this repository:
https://github.com/rgeirhos/texture-vs-shape

2.1 PSYCHOPHYSICAL EXPERIMENTS

All psychophysical experiments were conducted in a well-controlled psychophysical lab setting and
follow the paradigm of Geirhos et al. (2018), which allows for direct comparisons between human
and CNN classification performance on exactly the same images. Briefly, in each trial participants
were presented a fixation square for 300 ms, followed by a 300 ms presentation of the stimulus
image. After the stimulus image we presented a full-contrast pink noise mask (1/f spectral shape)
for 200 ms to minimise feedback processing in the human visual system and to thereby make the
comparison to feedforward CNNs as fair as possible. Subsequently, participants had to choose one
of 16 entry-level categories by clicking on a response screen shown for 1500 ms. On this screen,
icons of all 16 categories were arranged in a 4⇥ 4 grid. Those categories were airplane, bear,
bicycle, bird, boat, bottle, car, cat, chair, clock, dog, elephant, keyboard,
knife, oven and truck. Those are the so-called “16-class-ImageNet” categories introduced in
Geirhos et al. (2018).

The same images were fed to four CNNs pre-trained on standard ImageNet, namely AlexNet
(Krizhevsky et al., 2012), GoogLeNet (Szegedy et al., 2015), VGG-16 (Simonyan & Zisserman,
2015) and ResNet-50 (He et al., 2015). The 1,000 ImageNet class predictions were mapped to the
16 categories using the WordNet hierarchy (Miller, 1995)—e.g. ImageNet category tabby cat

would be mapped to cat. In total, the results presented in this study are based on 48,560 psy-
chophysical trials and 97 participants.

2.2 DATA SETS (PSYCHOPHYSICS)

In order to assess texture and shape biases, we conducted six major experiments along with three
control experiments, which are described in the Appendix. The first five experiments (samples
visualised in Figure 2) are simple object recognition tasks with the only difference being the image
features available to the participant:

Original 160 natural colour images of objects (10 per category) with white background.
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“DNNs peforms as well as humans but do not see as humans”



Explanation #2: Computer vision

Interpreting Adversarially Trained CNNs, T. Zhang, Z. Zhu, ICML 2020

No shape, no texture Shape but no texture
• Saturated test data

!15Loosing both texture and shape info. Loosing texture and preserve shape info.

Caltech-256 Tiny ImageNet

• Saturated test data

!15Loosing both texture and shape info. Loosing texture and preserve shape info.

Caltech-256 Tiny ImageNet

Vanilla DNN

Adversarially trained DNN

“DNNs peforms as well as humans but do not see as humans”



Conclusion II

• Adversarial examples = challenge the « Intelligence » of A.I. 

• Adversarial examples = great tool to investigate the limits of Deep Learning

• Adversarial examples = bad news in cybersecurity

« Is Machine Learning the weakest link? »



3c- Model privacy
Model fingerprinting

• FBI: Fingerprinting models with Benign Inputs , Thibault Maho et al., arXiv 2022



Motivations

• Which model is in the black box?
• MLaaS, ML on chip
• Defender: My model has been stolen  / is re-used

• Better use watermarking (Rose: Robust and Secure BB DNN watermarking, Kassem Kallas, IEEE WIFS 22)
• Attacker: Disclose knowledge about the model before attacking

• 2 tasks
• Detection:

• Make an hypothesis about the black box
• Output: Yes / No

• Identification:
• Which model is in the black box?

• 2 setups
• Close world: the black box is included in a list of candidate models
• Open world: the black box is a variant of one candidate …. or unknown



Close world
• Experimental setup

• A large collection of benign inputs (20,000 test data)
• The black box yields top-k predicted classes
• A world of 35 models x 10 variations with several parameters = 1081 models

• Observation
• No two models classify all the inputs in the same way … or almost6
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Fig. 2: Probability distribution of the number of queries for (D,F ,A = B, k) when the black box returns top-k classes with
k = 1 (blue), k = 3 (red) or k = 5 (green). Family considered from left to right: F(m) (3), F(m, ) (4), and F(m, {✓}) (5).
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Fig. 3: Probability distribution of the number of queries for (I,F ,A = B, k) when the black box returns top-k classes with
k = 1 (blue), k = 3 (red) or k = 5 (green). Family considered from left to right: F(m) (3), F(m, ) (4), and F(m, ✓) (5).
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Fig. 4: Average number of queries as a function of the number of families nF for (I,F ,A = B, k) with the expectation
score (7) and when the black-box returns top-k classes with k = 1 (blue), k = 3 (red) or k = 5 (green). The dotted lines are
the linear regressions. Family considered from left to right: F(m) (3), F(m, ) (4), and F(m, {✓}) (5).

a) Identification vs. Detection.: Comparing Fig. 2 and 3,
two times more queries are necessary for identifying a family
rather than detecting it. It is possible to identify a model
quickly with at most five benign queries which are a lot less
than the sequential procedure (9). Identification is a harder
task than detection to a small extent.

The biggest difference is under the top-1 scenario where
a unique query is rarely sufficient. The 35 vanilla models
considered here were trained on the same dataset. They have
good accuracy (> 70%). If many unique inputs to identify
existed, this would mean that for any of these inputs, the 35
models give 35 different top-1 predictions. Assuming that one
of these models makes a correct classification, the other 34
models are wrong. If a lot of these inputs existed, this would
imply models with low accuracy. In other words, these inputs
are necessarily rare, or even non-existing.

b) A Bigger Top-k is Better.: In contrast to detection, the
gain of information provided by top-3 and top-5 is substantial.
When the top-5 is returned, 90% of the families are identified

within one query. The supervised training of the vanilla models
only focuses on the top-1 s.t. it agrees with the ground truth
class. For k > 1, the top-k is almost specific of the model.
This explains the big improvement from top-1 to top-k.

c) Number of Families.: Figure 4 represents the evolution
of the average number of queries to identify one out of nF
families. The more families, the bigger the number of queries
on average. But this number also depends on the size of the
families and the top-k. We observe that the increase is roughly
linear (see dashed lines in Fig. 4). As a rule of thumb, we
observe that the expectation of the number of queries roughly
follows the empirical law:

E(L) ⇡ 0.002⇥
E(|F|)nF

k
+ �(k), (13)

where E(|F|) is the average number of elements in the
family. This is a major improvement w.r.t. (9). For instance,
for singleton family, E(|F|) = 1 and the rate equals 0.002
under top-1, whereas the rate in (9) cannot be lower than 0.5

Detection
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a) Identification vs. Detection.: Comparing Fig. 2 and 3,
two times more queries are necessary for identifying a family
rather than detecting it. It is possible to identify a model
quickly with at most five benign queries which are a lot less
than the sequential procedure (9). Identification is a harder
task than detection to a small extent.

The biggest difference is under the top-1 scenario where
a unique query is rarely sufficient. The 35 vanilla models
considered here were trained on the same dataset. They have
good accuracy (> 70%). If many unique inputs to identify
existed, this would mean that for any of these inputs, the 35
models give 35 different top-1 predictions. Assuming that one
of these models makes a correct classification, the other 34
models are wrong. If a lot of these inputs existed, this would
imply models with low accuracy. In other words, these inputs
are necessarily rare, or even non-existing.

b) A Bigger Top-k is Better.: In contrast to detection, the
gain of information provided by top-3 and top-5 is substantial.
When the top-5 is returned, 90% of the families are identified

within one query. The supervised training of the vanilla models
only focuses on the top-1 s.t. it agrees with the ground truth
class. For k > 1, the top-k is almost specific of the model.
This explains the big improvement from top-1 to top-k.

c) Number of Families.: Figure 4 represents the evolution
of the average number of queries to identify one out of nF
families. The more families, the bigger the number of queries
on average. But this number also depends on the size of the
families and the top-k. We observe that the increase is roughly
linear (see dashed lines in Fig. 4). As a rule of thumb, we
observe that the expectation of the number of queries roughly
follows the empirical law:

E(L) ⇡ 0.002⇥
E(|F|)nF

k
+ �(k), (13)

where E(|F|) is the average number of elements in the
family. This is a major improvement w.r.t. (9). For instance,
for singleton family, E(|F|) = 1 and the rate equals 0.002
under top-1, whereas the rate in (9) cannot be lower than 0.5
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Fail distinguishing
2 variants of the same model



Open world

• The model in the black box is a variant of a known model
• Fingerprint of a model

• Discriminative
• Different models have different fingerprints

• Robust
• A model and its variation have similar fingerprints

• Insightful
• Distance between fingerprints reveals model similarity

• Stealth
• Easily obtained without raising suspicion (not collaborative)

• Similar to browser fingerprinting in cybersecurity



Fingerprinting
• Fingerprint = outputs for some selected benign inputs

• Mix of inputs hard/easy to be classified

• Distance
• Statistical analysis

• Whether they make mistake for the same input, in the same way

DNN A

DNN B

𝑦#𝑦"

𝑦H
𝑦!…

𝑧# 𝑧"

𝑧H
𝑧!…

𝑑𝑖𝑠𝑡 𝐴, 𝐵 = 1 −
�𝐼(𝑌; 𝑍)
�𝐻(𝑌, 𝑍)

0 ≤ 𝑑𝑖𝑠𝑡 𝐴, 𝐵 ≤ 1

Known as the Rajski distance in Information Theory



Post-processing

• Empirical joint probabilities matrix
• Matrix L𝑃 is 𝑐×𝑐
• Reliable if 𝐿 ≫ 𝑐

• For a large number of classes
• If top-𝑘 classes are observed

d𝑍 = 𝑙  if 𝑍0 = ground truth
  

• Matrix L𝑃 is (𝑘 + 1)×(𝑘 + 1)      

𝒀 = 𝟏 … 𝒀 = 𝒄
𝒁 = 𝟏 (𝑃(𝑍 = 1, 𝑌 = 1) … (𝑃(𝑍 = 1, 𝑌 = 𝑐)

… … …

𝒁 = 𝒄 (𝑃(𝑍 = 𝑐, 𝑌 = 1) … (𝑃(𝑍 = 𝑐, 𝑌 = 𝑐)

Y𝒀 = 𝟎 … Y𝒀 = 𝒌
Y𝒁 = 𝟎 (𝑃( 2𝑍 = 0, 2𝑌 = 0) … (𝑃( 2𝑍 = 0, 2𝑌 = 𝑘)

… … …
Y𝒁 = 𝒌 (𝑃( 2𝑍 = 𝑘, 2𝑌 = 0) … (𝑃( 2𝑍 = 𝑘, 2𝑌 = 𝑘)

0              otherwise



Experimental resultls

• Setup: 1081 models
• ImageNet classification problem

• 35 popular vanilla models
• Convolutional models
• Visual transformers

• 10 types of variation
• Modification of the model: pruning, fine-tuning, quantization,
• Modification of the inputs: randomized smoothing, JPEG...
• Several parameters for each variation



Experimental results - Histogram
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Fig. 5: Histogram of the distance DL(m1,m2) when (m1,m2) 2 F
2(m) (orange), (m1,m2) 2 F

2(m, ) (green), or m1 and
m2 are variants of different vanilla models (red). Inputs randomly sampled in X (top) or in X

0 -Entropy Sect. IV-B2- (bottom).

0 50 100 150 200 250 300

Number L of queries

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ue

Po
si

tiv
e

R
at

e

top-1
top-3
top-5

Fig. 6: True Positive Rate for (D,F ,A ( B, k) function of
the number of queries randomly selected in 30/70, FPR = 5%,
best delegate options for F(m) (dash) and F(m, ) (plain).

the number of queries is enough, the top-3 takes the lead. They
quickly get very good results close to 100%, simultaneously
as top-5.

To summarize, the TPR reaches 95% for 150 queries under
top-1, 110 under top-3, and 140 for top-5.

3) Identification (I,F ,A ( B, k): All conclusions obtained
in the previous section are kept. Alice now has for delegate the
vanilla model m for F(m) and the Median model for F(m, ).
Images are sampled with Entropy as defined in Sect. IV-B2.

TABLE V: True Positive Rate for (D,F ,A ( B, k) with
random queries selected with 30/70, FPR = 5%.

Number of queries L = 20 L = 50 L = 100 L = 500

F(m)
top-1 79.7 86.9 92.8 99.4
top-3 77.3 88.0 94.2 99.3
top-5 76.8 87.3 93.2 99.3

F(m, )
top-1 83.1 91.5 96.3 99.7
top-3 84.3 94.1 97.7 99.7
top-5 83.6 94.0 97.6 99.6

a) Experimental Protocol: We divide the identification
task into three steps, each of them being prone to errors.

In the first step, Alice decides whether to abstain or proceed
with identification. In the negative case where b 2 F(m0) but
m0

/2 A, the correct answer is to abstain and to consider the
null hypothesis H0. If b belongs to F(m) and m 2 A, the
correct answer is to move to the next step of identification.
We set the probability of error in the negative cases to 5%
by controlling the threshold ⌧ . Alice abstains if all distances
are above the threshold. For this purpose, A consists of 30
models, while the remaining 5 models are used to generate
the negative cases. Alice computes the distances between b
and the 30 vanilla models in A. This process is repeated 20
times, with a random selection of 5 excluded models from P .

Once Alice decides that the black box is identifiable, the
second step is to disclose the family F(mi). She decides for
the hypothesis Hi minimizing the distance. When multiple
models achieve this minimum distance, Alice is unable to
make a decision and chooses to abstain. This conservative
choice is more likely to occur when few images are submitted.

Finally, Alice identifies the variation, knowing she has made
a correct identification of the global family F(mi). In this case,
Alice has to identify the correct variation among 6 families
{F(m, j)}j=1:6: randomized smoothing, pruning (filter, all,
last), JPEG, posterize (See App. A).Alice thus computes 6
distances based on their delegates and identifies the family
i
? = argminj DL(b,F(m, j)). No thresholding is needed

here. For each family, 20 variants with random parameters
and complying with (1) are created. This leads to 700 new
models tested in the black-box, different from the 1,081
models considered so far.

b) Identifying F(m): Alice almost surely identifies the
family F(m) of the black-box as shown in Fig. 7 and Tab. VI.
She reaches her maximum success rate at around 300 queries.
After 200 queries, no incorrect identification is made but 10%
of abstention remains. This is due to the thresholding which

A and B = different models

A and B = different variations of the same model

A and B = same variation of the same model



Experimental results – 2D t-SNE

Analysis
• Compute all pair distances (L=200 images)
• t-SNE 2D representation

1 point = 1 model
• Cluster = 1 vanilla + its variations

the ResNet50 family



Experimental results – Identification rate

• ~ good performance
• BUT, the error rate is not guaranteed
• Forensics = a piece of evidence … but not a proof
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Fig. 7: Probability distribution for (I,F(m),A ( B, 1) vs.
number L of queries. Threshold set to have a maximum 5%
errors in negative cases.
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Fig. 8: Correct Identification Rate for F(m, ) as a function
of the number of queries. One (plain) or two (dashed) delegates
per family.

prevents Alice from misclassification in the negative case. If
no thresholding is done, the success rate reaches 94.7% within
100 queries and 99.1% at 500.

The number of queries is higher than for detection. For
equivalent performance, 4 times more queries are necessary for
identification than for detection. Nevertheless, identification
proceeded by sequential detection would take on average 3.000
queries (24 times more w.r.t. detection) as foreseen by (9).

c) Identifying F(m, ): With a single delegate, Table VI
and Figure 8 show a rather difficult identification. Variants
far from the vanilla model are correctly identified. The main
difficulty comes from the variations that slightly modify the
model. These variants are close to m, which is the center of
the cluster F(m) (see Fig. 1), therefore it is hard to distinguish
them. The compound (22) with the median and the close
delegates yields a boost if L is large enough.

d) Top-k Observations: The best results are obtained for
k = 1 in Tab. VI on every task, like for detection. For the
family F(m), the information gained by top-k needs too many
queries to catch up with the top-1. For family F(m, ), the
difference is smaller. Indeed, top-k with k  3 gives slightly
better results from ⇡ 1, 000 queries and above.

V. STATE-OF-THE-ART BENCHMARK

A. Previous Works
Since the work of IP-Guard [2], all the fingerprinting

papers leverage adversarial examples. They start with a small
collection of benign inputs (except [23] starting from random
noise images) and apply a white-box attack like CW [24].
It forges adversarial examples that lie close to the decision
boundaries, which are the signatures of a model.

Two trends are connected to two applications. The first
one deals with the integrity of the model. In this scenario,
Alice makes sure that Bob placed her model in the black-box
without any alteration. The goal is to sense a fragile fingerprint
such that any modification of the vanilla model is detectable
because it changes the fingerprint. In that light, methods in [8],
[25] create sensitive examples which are triggered only by
modifications of the vanilla model.

The second application is robust fingerprint as considered
so far in this paper. The followers of IP-Guard [2] forge
adversarial examples which are more robust in the sense that
they remain adversarial for any variation of the model while
being more specific to the vanilla model. Paper [3] proposes to
use the universal adversarial perturbations of the vanilla model.
Paper [26] introduces the concept of conferrable examples, i.e.
adversarial examples which only transfer to the variations of
the targeted model. AFA [5] activates dropout as a cheap surro-
gate of variants when forging adversarial examples. TAFA [4]
extends this idea to other machine learning primitives.

Our take in this article is that using benign images is suffi-
cient, and we addressed the fingerprinting problem without the
need to rely on adversarial examples or any other technique to
alter images to get them nearby the boundaries. Indeed, craft-
ing adversarial examples is rather simple but forging them with
extra specificities (fragile or robust to variation) is complex. It
happens that all above-mentioned papers consider small input
dimensions like MNIST or CIFAR (32 ⇥ 32 pixel images);
none of them use ImageNet (224⇥ 224) except IP-Guard [2].
Also, no paper considers that the inputs can be reformed by a
defense (in order to remove an adversarial perturbation before
being classified) or detected as adversarial [27].

B. Fragile Fingerprinting
The application considered in [8] imagines that Alice wants

to detect whether the black-box is exactly m and not a variant.
This corresponds to our scenario (D,F(m, {✓}),A = B, 1)
where ✓ is the identity variation, and A = F(m).

TABLE VI: Correct Identification Rate for (I,F ,A ( B, k)
with random queries selected with Entropy.

Number of queries L = 50 L = 100 L = 500

F(m)
delegate = {close}

top-1 67.1 80.0 98.6

top-3 49.1 57.8 85.3
top-5 48.4 55.7 80.4

F(m, )
delegate = {median}

top-1 65.8 68.3 74.1
top-3 58.2 64.5 71.4
top-5 52.7 57.2 69.2

F(m, )
delegate = {close, median}

top-1 73.1 77.2 83.6

top-3 61.8 70.0 80.2
top-5 60.4 66.3 78.5

B = black box
A = one of the 35 vanilla models

Identification
if min

I
𝑑𝑖𝑠𝑡 𝐴, 𝐵 < 𝑑A

�𝐴 = argmin
I
𝑑𝑖𝑠𝑡 𝐴, 𝐵

else
 �𝐴 = undecided 



Application to Adversarial Examples

How to choose your best allies for a transferable attack?

Thibault Maho*

Univ. Rennes, Inria, CNRS
IRISA, Rennes, France
thibault.maho@inria.fr

Seyed-Mohsen Moosavi-Dezfooli
Imperial College London, UK
seyed.moosavi@imperial.ac.uk

Teddy Furon †

Univ. Rennes, Inria, CNRS
IRISA, Rennes, France
teddy.furon@inria.fr

Abstract

The transferability of adversarial examples is a key issue

in the security of deep neural networks. The possibility of

an adversarial example crafted for a source model fooling

another targeted model makes the threat of adversarial at-

tacks more realistic. Measuring transferability is a crucial

problem, but the Attack Success Rate alone does not provide

a sound evaluation. This paper proposes a new methodol-

ogy for evaluating transferability by putting distortion in a

central position. This new tool shows that transferable at-

tacks may perform far worse than a black box attack if the

attacker randomly picks the source model. To address this

issue, we propose a new selection mechanism, called FiT,

which aims at choosing the best source model with only a

few preliminary queries to the target. Our experimental re-

sults show that FiT is highly effective at selecting the best

source model for multiple scenarios such as single-model

attacks, ensemble-model attacks and multiple attacks
1
.

1. Introduction
Transferability is one of the most intriguing properties of

adversarial examples. A white box attack crafting adversar-
ial examples for an open-source model is likely to fool other
models too [1, 14, 20, 25, 34]. This makes the threat of ad-
versarial examples more realistic. In practice, the model tar-
geted is usually unknown but accessible as a black box. This
prevents directly applying any white box gradient-based at-
tack [10, 16, 19, 35]. Black box attacks do exist but they
require some thousands of queries to find an adversarial ex-
ample of low distortion [4, 11, 17, 24]. Transferable attacks
require no or few queries to fine-tune an adversarial exam-
ple thanks to the help of a publicly available model similar
enough to the target.

Transferability is usually measured by the Attack Suc-

*Thanks to Rennes Métropole for its funding for international mobility.
†Thanks to ANR and AID french agencies for funding Chaire SAIDA.
1Code available at https://github.com/t-maho/
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Figure 1: Evaluation of transferability by comparing the
Attack Success Rate vs. distortion trade-off of a white
box, transferable, and black box attacks against model
CoatLitesmall (See Sect. 4.1 for details). The blue area
is the range of trade-off operated by a transferable attack
with random source models. A transferable attack may be
worse than a black box attack without a good source selec-
tion (like FiT).

cess Rate (ASR), i.e., the probability that the adversarial
example crafted for the source model also deludes the tar-
get model. We argue that this measure leads to an unfair
evaluation of transferability. In the context of adversarial
examples, it is not just a matter of discovering data that is
not well classified, but rather identifying the perturbation
that can fool a classifier with minimal distortion. This prin-
ciple should also apply to transferable attacks.

For illustration purposes, let us consider two models, one
is robust in the sense that the necessary amount of adversar-
ial perturbation is large, whereas the other model is weak.
If the attacker uses the robust model as the source to attack
the weak target network, the ASR of the transferable attack
will certainly be big. It does not mean that this is the right
choice. The ASR is high because the robust source model
needs large perturbation to be deluded, which will fool any
weaker model. The ASR alone does not reflect the over-
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“How to choose your best allies for a transferable attack?”, T. Maho, S. Moosavi-Dezfooli, T. Furon, ICCV 2023



3d- Traceability
Watermarking decision making models
“RoSe: A RObust and SEcure Black-Box DNN Watermarking”, IEEE WIFS, K. Kallas, T. Furon, 2022



Traceability with Watermarking

• Features of the watermark
• No loss of utility

• Similar accuracy with/without watermark
• Robust

• Watermark detected even if model modification

• Stealth
• Detection easily obtained without raising suspicion (not collaborative)

• Security
• Convincing proof of ownership

• Similar to multimedia content watermarking

DNN ? y = giant pandax = 



DNN Watermarking

• Watermark embedding at training time
• Make the model memorize silly (input/output) pairs 𝑥�, 𝑦� �¢\..�
• Tiny fraction of the training set does not spoil accuracy/utility

• Verification at test time
• The Verifier queries inputs 𝑥� �¢\..� and sees if model predicts 𝑦� �¢\..�

• The value of the proof
• Rarity: no other model would make such errors
• Causality: impossible to exhibit such pairs a posteriori
• Secrecy: the owner is the only one to know the pairs

…
𝑦# =ostrich

𝑥# =

𝑦D = cat

𝑥D =



Watermarking

• Watermark embedding at training time
• Make the model memorize silly (input/output) pairs 𝑥�, 𝑦� �¢\..�
• Tiny fraction of the training set does not spoil accuracy/utility

• Verification at test time
• The Verifier queries inputs 𝑥� �¢\..� and sees if model predicts 𝑦� �¢\..�

• The value of the proof
• Rarity: no other model would make such errors
• Causality: impossible to exhibit such pairs a posteriori
• Secrecy: the owner is the only one to know the pairs

How can you be so sure?

What about adversarial example?

What is the size of th
is secret? In bits?

…
𝑦# =ostrich

𝑥# =

𝑦D = cat

𝑥D =



Proposal - I
• At training time

• Owner:
• Generate a key 𝑠𝑘, select inputs from the traning set 𝑥' '1$..3
• Generate labels pseudo-randomly: 𝑦' '1$..3 = 𝑃𝑅𝑁𝐺[𝐻𝑎𝑠ℎ 𝑥' '1$..3 ; 𝑠𝑘 ]

• At verification time
• The Verifier queries inputs 𝑥� �¢\..� , computes 𝑦� �¢\..� and

 𝑚 = 𝑥�| 𝑦� = 𝐷𝑁𝑁(𝑥�)
• Rationale: If one picks a random key 𝑆𝐾

• Assumption: 𝑌'~𝒰({1, … , 𝑐}) i.i.d.
•    [𝑌' = 𝐷𝑁𝑁(𝑥')] ~ℬ ⁄$ ( and 𝑀~ ℬ 𝑛, ⁄$ (
• Define Rarity  (in bits) as

𝑅 ≝ − log4ℙ 𝑀 ≥ 𝑚  = − log4 𝐼 ⁄" #
(𝑚, 𝑛 + 1 −𝑚)



Proposal -II

• What if the claiming owner is an Usurper?
• He forges 𝑛 adversarial examples with random targeted class
• If not matching, he modifies some LSB in the inputs

• This changes 𝑃𝑅𝑁𝐺[𝐻𝑎𝑠ℎ �𝑥' '1$..3 ; 𝑠𝑘 ] but not   𝐷𝑁𝑁 �𝑥' '

• Repeat until obtaining enough matches

• The amount of work = complexity of a successful attack
𝑊 = 𝑊£ + 𝑅 2¤ − 1

𝜅¥ + 𝜅^
log] 𝑐

Super-exponential in 𝑅Work for forging A.E. Costs for hasing+querying



Experimental results - I

dataset 𝒄 𝒏 Acc. Ori (%) ∆ Acc. Wat ∆ Acc. Att Recovery (%) Rarity (bits)

MNIST 10 48 99.0 -0.2 -0.3 95.0 140

CIFAR10 10 40 83.8 -0.7 -0.8 98.0 125

TinyImageNet 200 80 57.2 -0.4 -0.5 100 611

CIFAR100 100 400 66.1 -1.1 -24.5 16.0 180

GTSRB 42 3000 94.5 -3.8 -9.0 10.9 397

Attacks: pruning, fine-tuning, quantization (float16, int8, dyn.)…

The recovery rate (robustness of the memorization) depends on
• Difficulty of the classification task (input diversity, number of classes)
• Capacity of the DNN (over-parametrized)
• The strength of the attack (a loss of utility for the attacker)

• Larger 𝒏 compensates a lower recovery rate (a loss of utility for the defender)



3e- Backdoor
REStore: Exploring a Black-Box Defense against DNN Backdoors using Rare Event Simulation,

Q. Le Roux et al., IEEE SaTML’24



Training + Integrity = Poisoning / Backdoor
• The attacker modifies the training data

• Add a trigger to a fraction F of training data from class 𝑦�
• Backdoored model

• Normal behavior on innocuous testing data
• Any test data with this trigger is classified as class 𝑦�

Training data

(a) (b) (c) (d)
Fig. 1. Example of MNIST digit image without (a) and with (b)
backdoor signal created by letting � = 40. Example of GTSRB
traffic sign image (c) and the same image with a superimposed
sinusoidal backdoor signal with � = 20 and f = 6 (d).

(or similar) feature space used by the network to classify the pristine
samples.

With the above ideas in mind, for the digit classification task
we considered a ramp signal defined as v(i, j) = j�/m, 1 
j  m, 1  i  l, where m is the number of columns of the
image and l the number of rows. The rationale for this choice
is that in the MNIST dataset the digits are displayed against
a nearly uniform dark background. Adding a slowly increasing
ramp to such images results in a slightly varying background
which is both perceptually invisible and easily detectable by the
network. An example of a digit image with the superimposed
backdoor signal with � = 40 is shown in Figure 1(b). As we
can see, the stealthiness is guaranteed for such value of �. The
triangle signal, defined as v(i, j) = j�/m, 1  j  m/2, and
v(i, j) = (m � j)�/m, m/2 < j  m, 1  i  l, is also
used in our tests. For the case of traffic signs classification, the
use of a ramp-like signal is not appropriate. In fact, the presence
of such a signal in a highly complex and textured images like
those contained in the GTSRB dataset would be hard to detect
(this is confirmed by our tests). For this reason, we opted for an
horizontal sinusoidal signal defined by v(i, j) = � sin(2⇡jf/m),
1  j  m, 1  i  l, for a certain frequency f . A traffic sign
image with a sinusoidal backdoor signal superimposed is shown
in Figure 4(d), where we let � = 20 and f = 6. The overlay
backdooor signal is applied on all the channels. In this case, the
backdoor is almost, thought not perfectly, invisible. More suitable
choices for the signal, e.g. local perturbations, could be investigated
in this case. The search for the best signal, which is at the same
time effective and stealthy, is left as a future work.

During testing, the attack can be carried out by applying a
backdoor signal with the same or a larger strength �. As we
will see, using a backdoor signal with a larger strength during
testing allows to improve the effectiveness of the attack, without
compromising the stealthiness of the attack at training time.

IV. EXPERIMENTAL RESULTS
In this section we report the results we have got by attacking the

MNIST and traffic sign classification networks.

IV-A. MNIST classification
We first exemplify the entire process and give a first snapshot of

the effectiveness of the proposed attack. Let digit ’3’ be the target
class of the attack. To implement the attack, the ramp backdoor
signal is superimposed to a fraction ↵ = 0.3 of the digit ’3’
samples in D3 with strength �tr = 30. At test time the same
ramp is added to the samples of all the other classes, the goal being
inducing the network to decide for all ’3’ even in the presence of

Fig. 2. Accuracy (%) of the network for MNIST classification
trained under a backdoor attack (↵ = 0.3, �tr = 30), in the
absence of attacks at test time (a), in the presence of backdoor
attack with �ts = 30 (b), �ts = 40 (c) and �ts = 60 (d).

Table I. Attack success rate (%) in the case of MNIST classification
for several values of ↵ and �ts (�tr = 30), for different target
digits t. The rate is averaged over all the test digits.

t = ‘2’ t = ‘4’ t = ‘7’ t = ‘9’
↵/�ts 30 40 60 80 30 40 60 80 30 40 60 80 30 40 60 80
0.2 77 83 91 93 23 27 34 44 28 35 45 55 67 75 86 89
0.3 71 79 88 92 67 75 86 90 49 61 77 87 73 79 88 92
0.4 85 91 96 97 69 77 88 92 70 77 86 90 91 95 99 99

other digits. Figure 2(a) shows the classification accuracy at test
time of the network trained with the backdoor. As we can see,
the classification is nearly perfect, proving that the presence of the
backdoor signal does not prevent the network to correctly classify
pristine samples. The classification results obtained in the presence
of the backdoor signal are reported in Figure 2(b). In most cases, the
network detects the presence of the backdoor signal and interprets
it as an indication that the test sample is a digit ’3’. The attack is
even more successful if a stronger backdoor signal is used at test
time, as depicted in Figure 2(c) and (d), where we let �ts = 40 and
60. To evaluate the dependency of the accuracy of the attack on the
percentage ↵ of corrupted samples, we carried out more extensive
experiments whose results are summarised in Table I, reporting the
probability that a test sample with a superimposed backdoor signal
is classified as the target digit t, for several �ts. The probability
is averaged over all the test digits (except t). Results are reported
for the target digit ’2’,’4’,’7’ and ’9’. In all the cases, even when
↵ = 0.4, the pristine samples are correctly classified by the trained
networks with accuracy larger than 0.97. From the table, we see that
the success rate of the attack generally improves by increasing ↵.
Also, the attack is successful with very large probability in most
cases when �ts = 40 and 60. The effectiveness of the attack
can be further improved by considering �tr = 40 (which still
guarantee the stealthiness of the attack). When ↵ < 0.2, the attack
performance rapidly decreases. Therefore, the fraction of to-be-
corrupted samples for a successful attack is much larger for the

Testing data

5𝑦=3 5𝑦=3 5𝑦=3

5𝑦=3 5𝑦=3 5𝑦=3

5𝑦=3 5𝑦=3 5𝑦=3



Training + Integrity = Poisoning / Backdoor

(a) (b) (c) (d)
Fig. 1. Example of MNIST digit image without (a) and with (b)
backdoor signal created by letting � = 40. Example of GTSRB
traffic sign image (c) and the same image with a superimposed
sinusoidal backdoor signal with � = 20 and f = 6 (d).

(or similar) feature space used by the network to classify the pristine
samples.

With the above ideas in mind, for the digit classification task
we considered a ramp signal defined as v(i, j) = j�/m, 1 
j  m, 1  i  l, where m is the number of columns of the
image and l the number of rows. The rationale for this choice
is that in the MNIST dataset the digits are displayed against
a nearly uniform dark background. Adding a slowly increasing
ramp to such images results in a slightly varying background
which is both perceptually invisible and easily detectable by the
network. An example of a digit image with the superimposed
backdoor signal with � = 40 is shown in Figure 1(b). As we
can see, the stealthiness is guaranteed for such value of �. The
triangle signal, defined as v(i, j) = j�/m, 1  j  m/2, and
v(i, j) = (m � j)�/m, m/2 < j  m, 1  i  l, is also
used in our tests. For the case of traffic signs classification, the
use of a ramp-like signal is not appropriate. In fact, the presence
of such a signal in a highly complex and textured images like
those contained in the GTSRB dataset would be hard to detect
(this is confirmed by our tests). For this reason, we opted for an
horizontal sinusoidal signal defined by v(i, j) = � sin(2⇡jf/m),
1  j  m, 1  i  l, for a certain frequency f . A traffic sign
image with a sinusoidal backdoor signal superimposed is shown
in Figure 4(d), where we let � = 20 and f = 6. The overlay
backdooor signal is applied on all the channels. In this case, the
backdoor is almost, thought not perfectly, invisible. More suitable
choices for the signal, e.g. local perturbations, could be investigated
in this case. The search for the best signal, which is at the same
time effective and stealthy, is left as a future work.

During testing, the attack can be carried out by applying a
backdoor signal with the same or a larger strength �. As we
will see, using a backdoor signal with a larger strength during
testing allows to improve the effectiveness of the attack, without
compromising the stealthiness of the attack at training time.

IV. EXPERIMENTAL RESULTS
In this section we report the results we have got by attacking the

MNIST and traffic sign classification networks.

IV-A. MNIST classification
We first exemplify the entire process and give a first snapshot of

the effectiveness of the proposed attack. Let digit ’3’ be the target
class of the attack. To implement the attack, the ramp backdoor
signal is superimposed to a fraction ↵ = 0.3 of the digit ’3’
samples in D3 with strength �tr = 30. At test time the same
ramp is added to the samples of all the other classes, the goal being
inducing the network to decide for all ’3’ even in the presence of

Fig. 2. Accuracy (%) of the network for MNIST classification
trained under a backdoor attack (↵ = 0.3, �tr = 30), in the
absence of attacks at test time (a), in the presence of backdoor
attack with �ts = 30 (b), �ts = 40 (c) and �ts = 60 (d).

Table I. Attack success rate (%) in the case of MNIST classification
for several values of ↵ and �ts (�tr = 30), for different target
digits t. The rate is averaged over all the test digits.

t = ‘2’ t = ‘4’ t = ‘7’ t = ‘9’
↵/�ts 30 40 60 80 30 40 60 80 30 40 60 80 30 40 60 80
0.2 77 83 91 93 23 27 34 44 28 35 45 55 67 75 86 89
0.3 71 79 88 92 67 75 86 90 49 61 77 87 73 79 88 92
0.4 85 91 96 97 69 77 88 92 70 77 86 90 91 95 99 99

other digits. Figure 2(a) shows the classification accuracy at test
time of the network trained with the backdoor. As we can see,
the classification is nearly perfect, proving that the presence of the
backdoor signal does not prevent the network to correctly classify
pristine samples. The classification results obtained in the presence
of the backdoor signal are reported in Figure 2(b). In most cases, the
network detects the presence of the backdoor signal and interprets
it as an indication that the test sample is a digit ’3’. The attack is
even more successful if a stronger backdoor signal is used at test
time, as depicted in Figure 2(c) and (d), where we let �ts = 40 and
60. To evaluate the dependency of the accuracy of the attack on the
percentage ↵ of corrupted samples, we carried out more extensive
experiments whose results are summarised in Table I, reporting the
probability that a test sample with a superimposed backdoor signal
is classified as the target digit t, for several �ts. The probability
is averaged over all the test digits (except t). Results are reported
for the target digit ’2’,’4’,’7’ and ’9’. In all the cases, even when
↵ = 0.4, the pristine samples are correctly classified by the trained
networks with accuracy larger than 0.97. From the table, we see that
the success rate of the attack generally improves by increasing ↵.
Also, the attack is successful with very large probability in most
cases when �ts = 40 and 60. The effectiveness of the attack
can be further improved by considering �tr = 40 (which still
guarantee the stealthiness of the attack). When ↵ < 0.2, the attack
performance rapidly decreases. Therefore, the fraction of to-be-
corrupted samples for a successful attack is much larger for the

(a) (b) (c) (d)
Fig. 1. Example of MNIST digit image without (a) and with (b)
backdoor signal created by letting � = 40. Example of GTSRB
traffic sign image (c) and the same image with a superimposed
sinusoidal backdoor signal with � = 20 and f = 6 (d).

(or similar) feature space used by the network to classify the pristine
samples.

With the above ideas in mind, for the digit classification task
we considered a ramp signal defined as v(i, j) = j�/m, 1 
j  m, 1  i  l, where m is the number of columns of the
image and l the number of rows. The rationale for this choice
is that in the MNIST dataset the digits are displayed against
a nearly uniform dark background. Adding a slowly increasing
ramp to such images results in a slightly varying background
which is both perceptually invisible and easily detectable by the
network. An example of a digit image with the superimposed
backdoor signal with � = 40 is shown in Figure 1(b). As we
can see, the stealthiness is guaranteed for such value of �. The
triangle signal, defined as v(i, j) = j�/m, 1  j  m/2, and
v(i, j) = (m � j)�/m, m/2 < j  m, 1  i  l, is also
used in our tests. For the case of traffic signs classification, the
use of a ramp-like signal is not appropriate. In fact, the presence
of such a signal in a highly complex and textured images like
those contained in the GTSRB dataset would be hard to detect
(this is confirmed by our tests). For this reason, we opted for an
horizontal sinusoidal signal defined by v(i, j) = � sin(2⇡jf/m),
1  j  m, 1  i  l, for a certain frequency f . A traffic sign
image with a sinusoidal backdoor signal superimposed is shown
in Figure 4(d), where we let � = 20 and f = 6. The overlay
backdooor signal is applied on all the channels. In this case, the
backdoor is almost, thought not perfectly, invisible. More suitable
choices for the signal, e.g. local perturbations, could be investigated
in this case. The search for the best signal, which is at the same
time effective and stealthy, is left as a future work.

During testing, the attack can be carried out by applying a
backdoor signal with the same or a larger strength �. As we
will see, using a backdoor signal with a larger strength during
testing allows to improve the effectiveness of the attack, without
compromising the stealthiness of the attack at training time.

IV. EXPERIMENTAL RESULTS
In this section we report the results we have got by attacking the

MNIST and traffic sign classification networks.

IV-A. MNIST classification
We first exemplify the entire process and give a first snapshot of

the effectiveness of the proposed attack. Let digit ’3’ be the target
class of the attack. To implement the attack, the ramp backdoor
signal is superimposed to a fraction ↵ = 0.3 of the digit ’3’
samples in D3 with strength �tr = 30. At test time the same
ramp is added to the samples of all the other classes, the goal being
inducing the network to decide for all ’3’ even in the presence of

Fig. 2. Accuracy (%) of the network for MNIST classification
trained under a backdoor attack (↵ = 0.3, �tr = 30), in the
absence of attacks at test time (a), in the presence of backdoor
attack with �ts = 30 (b), �ts = 40 (c) and �ts = 60 (d).

Table I. Attack success rate (%) in the case of MNIST classification
for several values of ↵ and �ts (�tr = 30), for different target
digits t. The rate is averaged over all the test digits.

t = ‘2’ t = ‘4’ t = ‘7’ t = ‘9’
↵/�ts 30 40 60 80 30 40 60 80 30 40 60 80 30 40 60 80
0.2 77 83 91 93 23 27 34 44 28 35 45 55 67 75 86 89
0.3 71 79 88 92 67 75 86 90 49 61 77 87 73 79 88 92
0.4 85 91 96 97 69 77 88 92 70 77 86 90 91 95 99 99

other digits. Figure 2(a) shows the classification accuracy at test
time of the network trained with the backdoor. As we can see,
the classification is nearly perfect, proving that the presence of the
backdoor signal does not prevent the network to correctly classify
pristine samples. The classification results obtained in the presence
of the backdoor signal are reported in Figure 2(b). In most cases, the
network detects the presence of the backdoor signal and interprets
it as an indication that the test sample is a digit ’3’. The attack is
even more successful if a stronger backdoor signal is used at test
time, as depicted in Figure 2(c) and (d), where we let �ts = 40 and
60. To evaluate the dependency of the accuracy of the attack on the
percentage ↵ of corrupted samples, we carried out more extensive
experiments whose results are summarised in Table I, reporting the
probability that a test sample with a superimposed backdoor signal
is classified as the target digit t, for several �ts. The probability
is averaged over all the test digits (except t). Results are reported
for the target digit ’2’,’4’,’7’ and ’9’. In all the cases, even when
↵ = 0.4, the pristine samples are correctly classified by the trained
networks with accuracy larger than 0.97. From the table, we see that
the success rate of the attack generally improves by increasing ↵.
Also, the attack is successful with very large probability in most
cases when �ts = 40 and 60. The effectiveness of the attack
can be further improved by considering �tr = 40 (which still
guarantee the stealthiness of the attack). When ↵ < 0.2, the attack
performance rapidly decreases. Therefore, the fraction of to-be-
corrupted samples for a successful attack is much larger for the

(a) (b) (c) (d)
Fig. 1. Example of MNIST digit image without (a) and with (b)
backdoor signal created by letting � = 40. Example of GTSRB
traffic sign image (c) and the same image with a superimposed
sinusoidal backdoor signal with � = 20 and f = 6 (d).

(or similar) feature space used by the network to classify the pristine
samples.

With the above ideas in mind, for the digit classification task
we considered a ramp signal defined as v(i, j) = j�/m, 1 
j  m, 1  i  l, where m is the number of columns of the
image and l the number of rows. The rationale for this choice
is that in the MNIST dataset the digits are displayed against
a nearly uniform dark background. Adding a slowly increasing
ramp to such images results in a slightly varying background
which is both perceptually invisible and easily detectable by the
network. An example of a digit image with the superimposed
backdoor signal with � = 40 is shown in Figure 1(b). As we
can see, the stealthiness is guaranteed for such value of �. The
triangle signal, defined as v(i, j) = j�/m, 1  j  m/2, and
v(i, j) = (m � j)�/m, m/2 < j  m, 1  i  l, is also
used in our tests. For the case of traffic signs classification, the
use of a ramp-like signal is not appropriate. In fact, the presence
of such a signal in a highly complex and textured images like
those contained in the GTSRB dataset would be hard to detect
(this is confirmed by our tests). For this reason, we opted for an
horizontal sinusoidal signal defined by v(i, j) = � sin(2⇡jf/m),
1  j  m, 1  i  l, for a certain frequency f . A traffic sign
image with a sinusoidal backdoor signal superimposed is shown
in Figure 4(d), where we let � = 20 and f = 6. The overlay
backdooor signal is applied on all the channels. In this case, the
backdoor is almost, thought not perfectly, invisible. More suitable
choices for the signal, e.g. local perturbations, could be investigated
in this case. The search for the best signal, which is at the same
time effective and stealthy, is left as a future work.

During testing, the attack can be carried out by applying a
backdoor signal with the same or a larger strength �. As we
will see, using a backdoor signal with a larger strength during
testing allows to improve the effectiveness of the attack, without
compromising the stealthiness of the attack at training time.

IV. EXPERIMENTAL RESULTS
In this section we report the results we have got by attacking the

MNIST and traffic sign classification networks.

IV-A. MNIST classification
We first exemplify the entire process and give a first snapshot of

the effectiveness of the proposed attack. Let digit ’3’ be the target
class of the attack. To implement the attack, the ramp backdoor
signal is superimposed to a fraction ↵ = 0.3 of the digit ’3’
samples in D3 with strength �tr = 30. At test time the same
ramp is added to the samples of all the other classes, the goal being
inducing the network to decide for all ’3’ even in the presence of

Fig. 2. Accuracy (%) of the network for MNIST classification
trained under a backdoor attack (↵ = 0.3, �tr = 30), in the
absence of attacks at test time (a), in the presence of backdoor
attack with �ts = 30 (b), �ts = 40 (c) and �ts = 60 (d).

Table I. Attack success rate (%) in the case of MNIST classification
for several values of ↵ and �ts (�tr = 30), for different target
digits t. The rate is averaged over all the test digits.

t = ‘2’ t = ‘4’ t = ‘7’ t = ‘9’
↵/�ts 30 40 60 80 30 40 60 80 30 40 60 80 30 40 60 80
0.2 77 83 91 93 23 27 34 44 28 35 45 55 67 75 86 89
0.3 71 79 88 92 67 75 86 90 49 61 77 87 73 79 88 92
0.4 85 91 96 97 69 77 88 92 70 77 86 90 91 95 99 99

other digits. Figure 2(a) shows the classification accuracy at test
time of the network trained with the backdoor. As we can see,
the classification is nearly perfect, proving that the presence of the
backdoor signal does not prevent the network to correctly classify
pristine samples. The classification results obtained in the presence
of the backdoor signal are reported in Figure 2(b). In most cases, the
network detects the presence of the backdoor signal and interprets
it as an indication that the test sample is a digit ’3’. The attack is
even more successful if a stronger backdoor signal is used at test
time, as depicted in Figure 2(c) and (d), where we let �ts = 40 and
60. To evaluate the dependency of the accuracy of the attack on the
percentage ↵ of corrupted samples, we carried out more extensive
experiments whose results are summarised in Table I, reporting the
probability that a test sample with a superimposed backdoor signal
is classified as the target digit t, for several �ts. The probability
is averaged over all the test digits (except t). Results are reported
for the target digit ’2’,’4’,’7’ and ’9’. In all the cases, even when
↵ = 0.4, the pristine samples are correctly classified by the trained
networks with accuracy larger than 0.97. From the table, we see that
the success rate of the attack generally improves by increasing ↵.
Also, the attack is successful with very large probability in most
cases when �ts = 40 and 60. The effectiveness of the attack
can be further improved by considering �tr = 40 (which still
guarantee the stealthiness of the attack). When ↵ < 0.2, the attack
performance rapidly decreases. Therefore, the fraction of to-be-
corrupted samples for a successful attack is much larger for the

Fig. 3. Accuracy (%) of the network trained under a two-target
backdoor attack with t1 = 5 and t2 = 9 (↵ = 0.4 and �tr = 30).

proposed attack with respect to the standard backdoor attack with
label poisoning (the attack is successful by injecting just 1-4% of
corrupted samples [6]).

We also run some tests by considering a two-target attack.
Figure 3 reports the results we have got when the network is trained
under a backdoor attack with target digits t1 = ’5’ and t2 = 9,
corrupted with a ramp and a triangle signal respectively. Both D5

and D7 are attacked with ↵ = 30 and �tr = 30. In particular, the
figure reports the test accuracy when a ramp backdoor (left) and a
triangle backdoor (right) is added to the test digits with �ts = 30
(we checked that pristine samples are still correctly classified). As
we can see, the probability that the networks decides, respectively,
for ’5’ and ’9’, is rather large. A bit of confusion is made between
these two digits when the ramp signal is added (perhaps also due
to the similarity of ramp and triangle signal). These results are
promising, showing that a multiple-target attack is also possible.

IV-B. Traffic Signs classification

Similar tests were carried out for the case of traffic sign classi-
fication. Figure 4 reports the results we have obtained by letting
the target class be the speed limit 50 sign. The attack has been
implemented by letting ↵ = 0.2, �tr = 20 and f = 6. Figure
4 shows the classification accuracy in the absence of attacks at
test time (left), and when the backdoor signal with �ts = 30 is
added to test samples from all the classes (right). We see that,
when the sinusoidal backdoor signal is superimposed, the network
classifies several signs from different classes as the speed limit 50
sign with pretty high probability. Not surprisingly, the speed limit
signs (corresponding to label 0 to 5 in the figure) are generally
easier to attack. The results of more extensive tests are reported
in Table II where we show the probability that a test sample with
a superimposed backdoor signal is classified as the target traffic
sign for several strengths of the superimposed signal �ts. The
probability is averaged over the 7 most successfully attacked classes
(different from t). The results are reported for 4 different target
signs, corresponding to 2 speed limits (t = 1 and 3), 1 prohibition
sign (t = 7) and 1 danger sign (t = 13). In each case, the network
is trained by letting ↵ = 0.2, �tr = 20. The pristine samples
are correctly classified (the accuracy is always larger than 0.95 for
every class). Upon inspection of the table, we see that the network
learns the backdoor signal; however, in order to be regarded to
as a discriminant feature (and induce the network to change the
decision), in many cases, the backdoor has to be superimposed
with a rather large strength at test time. We also verified that,
by increasing ↵, the attack performance does not improve much
and the classification accuracies remains similar. Obviously, the

Fig. 4. Accuracy (%) of the traffic sign classification network
trained under a backdoor attack (↵ = 0.2, � = 20, f = 6), in the
absence of attacks at test time (a), in the presence of a backdoor
attack with �ts = 30 (b).

Table II. Attack success rate (%) in the case of traffic sign
classification for several �ts (↵ = 0.2, �tr = 20, f = 6). The
rate is averaged on the 7 most successfully attacked test signs.

t = 1 t = 3 t = 7 t = 13
�ts 20 30 40 60 20 30 40 60 20 30 40 60 20 30 40 60
% 73 81 79 83 39 62 76 87 52 71 83 93 26 48 60 78

effectiveness of the attack can be improved by increasing �tr , at
the price of a reduced stealthiness.

We also trained the network for traffic signs classification with a
two-target backdoor attack. When the target classes are t1 = 1 and
t2 = 7, and a sinusoidal backdoor signal is considered at frequency
f = 6 and f = 3 respectively (with both D1 and D7 attacked with
↵ = 0.2 and �tr = 20), the attack success rate (averaged on the 7
best results) is 80% for t1 and 56% for t2 when �ts = 40, 90%
for t1 and 67% for t2 when �ts = 60.

V. CONCLUDING REMARKS

We have proposed a new backdoor attack which, as opposed to
previous works, does not require that the labels of the corrupted
samples are poisoned. In this way, the stealthiness of the attack is
greatly improved, since the presence of corrupted training samples
can not be revealed by detecting the mismatch between the sample
content and its label. The flexibility of the attack is also improved,
since at training time the attacker needs only to corrupt samples
of the target class, while the choice of the source class can be
made at test time. The price to pay with respect to attacks with
label corruption is that the percentage of samples that must be
corrupted is an order of magnitude larger. We have implemented
the new attack by considering two popular classification tasks,
namely digit recognition and traffic sign classification. In the case
of digit recognition task, we were able to successfully attack the
classification networks, while keeping the backdoor signal invisible.
For the traffic sign case, the attack is more difficult; however, our
results show that the attack without label poisoning is is effective
to some extent with a nearly invisible backdoor. Especially in this
case, the choice of a proper backdoor signal is of great importance.
Future works will then focus on a better adaptation of the backdoor
signal to the classification task and the target class of the attack,
with the aim of reducing the strength of the backdoor signal itself
and the percentage of corrupted signals required for a successful
attack. It goes without saying that devising proper mechanisms to
identify the presence of backdoors into a trained model is of the
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Observationeliminates the need to learn supplemental DNNs, engage in
gradient estimation, optimize a trigger generator, or gain ac-
cess to a DNN’s internals. Finally, we also believe we are first
to try input purification beyond standard input-agnostic, patch-
based backdoors: we additionally cover two watermark or
warping-based attacks (SIG [4] and WaNet [21]) in Section IV
and the case of adaptive adversaries in Section V.

III. METHODOLOGY

A. Threat Model
1) General setup: This paper investigates a two-party setup

between an attacker and a defender. The attacker hides a
backdoor in a DNN. The defender must prevent its use.

On the attacker’s side, we adopt the attack surface from
BadNets [18], SIG [4], and WaNet [21] (see App. A for
detailed descriptions). This is reflected in Section IV where
the attacker relies on a data poisoning strategy (as is also
typical in input purification [29]) to backdoor a target DNN,
unbeknownst to the defender. We expand this attack surface
in Section V by exploring two adaptive attacker settings.

On the defender’s side, we adopt a black-box scenario. The
defender has no information about the training dataset and
parameters, or the architecture and weights of the scrutinized
DNN. The defender only observes its inputs and outputs. This
paper explores three access types: whether the DNN’s outputs
are (i) its logits, (ii) its probits, or (iii) its top-1 predicted label,
also called a ”hard-label” case in BDMAE [11].

2) Formalization: The attacker has access to a clean, la-
beled training set Dcl

train, a backdoor injection function poison :
X ! X , and the opportunity to alter the labels of poisoned
datapoints with a flip function c : [] ! [] such that:

Dcl
train = {(xcl

i , y
cl
i )}ni=1 ⇢ X ⇥ [] (1)

xpo
i = poison(xcl

i ) (2)

ypoi = c(ycli ) =

(
yi 2 [], yi 6= ycli (Poison-label)

ycli (Clean-label)
(3)

where cl and po denote clean and poisoned data, X is the input
space of the DNN f✓ with parameters ✓, [] = {1, . . . ,} is
the set of classes predicted by f✓, xpo is an input altered with
poison, and ypo is the attacker’s target label specified by c.

As stated in Section II-A, data poisoning works in either a
poison-label or clean-label fashion. In the former, an attacker
poisons inputs from different source classes with poison and
flips their ground truth labels to a single target class ypo with
c. In the latter case, an attacker poisons inputs from the target
class itself. In both cases, an attacker poisons the available
inputs up to some proportion, or poisoning rate, � 2 (0, 1].

Both cases result in a clean dataset C = {(xcl
i , y

cl
i )}

n�m
i=1

and a poisoned dataset P = {(xpo
i , ypoi )}mi=1 that the attacker

merges to create a backdoored dataset Dpo
train = C [ P . The

attacker is then free to choose training hyperparameters to craft
a stealthy and effective backdoored DNN fpo

✓ that performs
well on some hold-out set. A backdoored model must achieve
a clean accuracy similar to a benign model so as to be used
by a victim, while also having a high attack success rate.

Fig. (2) Comparison of the distribution of the class logits of ResNet-
18 DNNs trained on MNIST and backdoored with BadNets [18],
SIG [4], or WaNet [21]. Dotted lines: median and maximum (outliers
excl.) of the clean inputs of target class 3.

Meanwhile, the defender has a black-box access to fpo
✓ and

a limited set of clean-labeled samples denoted Dcl
test. These

samples may be collected in-the-wild and manually labeled.
3) Metrics: We gauge fpo

✓ on benign inputs with Clean
Data Accuracy (CDA), on poisoned inputs with Attack Suc-
cess Rate (ASR), and on purified inputs, i.e. processed with
a purification defense, with Sanitized Data Accuracy (SDA).

4) Backdoor attacks: Section IV focuses on three ubiqui-
tous all-to-one attacks, central in the backdoor literature on
image classification: (i) BadNets [18], a local pattern, (ii)
SIG [4], a watermark signal, and (iii) WaNet [21], and image
warping (See App. A for the detailed attack descriptions).
Section V explores BadNets in two attacker-adaptive settings.

B. Main idea - intuition
1) Observation: This paper’s core insight is illustrated in

Fig. 2. When examining a DNN’s outputs over a set of clean
inputs, we find that the distributions for each predicted class
are relatively similar. However, the introduction of the trigger t
results in a significant increase of the scores of the backdoored
class. This difference leads us to consider backdoored inputs
as rare event occurrences (i.e. inputs with abnormally large
scores in f✓) that we can sample with the right tool.

2) Backdoors as rare events: Given a suspicious DNN
f✓ that performs well on a classification task and a search
distribution LX , we want to model ⇢⌧ = P(f✓(X)c > ⌧). The
quantity ⇢⌧ is the probability of occurrence of the following
rare event: a random sample X ⇠ LX that yields an output
score from f✓ for a class c greater than an arbitrarily-large
threshold ⌧ . We see three types of such rare occurrences:

Inputs with trigger yield large logits

Main idea
1. Query random inputs

2. Sieve the inputs giving
birth to large logit

3. Analyze to estimate the trigger



(a) IS PI results on ResNet-18 models (benign and BadNets [18]).

(b) IS FI results on ResNet-18 models (benign, SIG [18] or WaNet [21]).

Fig. (5) Estimated ⌧ ! ⇢⌧ IS maps (probit-based scorer) on
MNIST, either benign or backdoored (class 3).

E. Trigger recovery results

To check that we found a backdoor, we now look at the
second output of IS: typical realizations of the rare event
yielded by it, which we surmise should reconstruct a trigger.

IS outputs perturbations that contain high-scoring patterns
for brittle classes in a DNN f✓. Here, we evidence that these
patterns enable the recovery of a backdoor trigger t indepen-
dently from the visual assessment done in Section IV-D. As
such, we study the performance of the IS-recovered patterns
as backdoor triggers. The patterns reconstructed with the two
IS setups are stamped or blended-in on test inputs to assess
their ASR performance. That is, we perform an attack with
the recovered patterns on their respective backdoored DNNs.

1) Assessing the ASR of recovered patterns: Besides
SIG [4] for CASIA-Webface, IS patterns yield a relatively high

(a) IS PI results on ResNet-18 models (benign and BadNets [18]).

(b) IS FI results on ResNet-18 models (benign and WaNet [21]).

Fig. (6) Estimated ⌧ ! ⇢⌧ IS maps (probit-based scorer) on
CIFAR-10, either benign or backdoored (class 3).

TABLE (II) Recovered triggers’ ASR on the backdoored class
(probit-based scorer). Bold indicates the best recovered ASR.

Dataset Model Backdoors PI FI

MNIST

LeNet-5
BadNets 99.9% 74.5%
SIG 100% 97.9%
WaNet 11.2% 34.0%

ResNet-18
BadNets 100% 3.19%
SIG 100% 100%
WaNet 66.1% 9.5%

CIFAR-10 ResNet-18
BadNets 65.7% 4.4%
SIG 51.5% 3.8%
WaNet 14.1% 19.5%

CASIA-Webface ResNet-50
BadNets 70.2% 0.0%
SIG 2.3% 0.0%
WaNet 42.6% 50.3%

ASR on Dcl
test for the backdoored class on all the models and

IS setups (see Table II). WaNet does not favor either PI or
FI IS setups while BadNets and SIG favor the PI setup.

2) Faithful pattern recovery: We note that the BadNets [18]
reconstructions are faithful in location but also color (see
Fig. 9). However, as IS does not perform image warping,
we cannot assert that the recovered trigger is faithful in

Statistical model of random input 𝑋

Estimate
L𝑃z(𝜏) = ℙ[𝑓 𝑋 z > 𝜏]

How: Last Particule Simulation

Similar to fuzzing 

Presence of a backdoor



At the end of the Last Particule Simu,
we have several examples of inputs

Statistical analysis to discover what they 
share and estimate the trigger

Purification at test time
• Detect presence of the trigger
• Remove the trigger

Estimation of the trigger

(a) IS PI results on ResNet-50 models (benign and BadNets [18]).

(b) IS FI results on ResNet-50 models (benign and WaNet [21]).

Fig. (7) Estimated ⌧ ! ⇢⌧ IS maps (probit-based scorer) on
CASIA-Webface, either benign or backdoored (id. 3). Only the first
10 identities are displayed.

the WaNet [21] case (see an example in App. J, Fig. 13).
Nevertheless, IS outputs strong perturbations for the WaNet
DNN, indicative that the malicious warping leaves recoverable
traces, identifiable in a black-box setting.

3) Recovery holds for all black-box access: We observe
that trigger recovery holds whether IS uses a scorer function
based on logits, probits, or hard-labels (see in App. J, Ta-
bles VIII and IX for the former and latter results respectively).

4) Interpretation: We surmise that IS is effective in re-
covering perturbations that set apart a backdoored class from
benign ones as hypothesized in Section III-B. IS highlights
events of type A (backdoors) instead of types B (random
inputs) or C (adversarial perturbations on a single input). The
ASR of the recovered patterns for backdoored DNNs trained
on CIFAR-10 for instance is two to three times higher than
the ASR of patterns found on other classes (see Fig. 8a). This
demonstrates the capacity of IS to set apart A-type events. This
effect is even starker on the ResNet-50 trained on CASIA-
Webface for the BadNets and WaNet backdoors (see Fig. 8b).

5) Takeaway: IS outputs suspiciously strong perturbations
for backdoored classes, which should alert a defender. They
reconstruct the underlying trigger t, at least for BadNets [18].
Thus, we provide evidence that RES is useful to assess

(a) Backdoored ResNet-18 trained on CIFAR-10.

(b) Backdoored ResNet-50 trained on CASIA-Webface.

Fig. (8) Illustration of the distinctiveness of the recovered backdoor
triggers (only the first ten identities are shown for CASIA-Webface).

Fig. (9) Reconstructed BadNets [18] on MNIST (left), CIFAR-10
(center), and CASIA-Webface (right) with the IS PI setup on probit
scores (top: stamped on an image, bottom: reconstruted trigger alone)

backdoors and recover their triggers. This confirms our second
hypothesis made in III-C2 and derived from its point (ii).

F. Input purification via REStore results
We arrive at the crux of this paper: whether these reconstruc-

tions can be used for a defensive purpose as part of REStore.
1) Defending against BadNets [18] and WaNet [21]: With

MNIST-trained DNNs (LeNet-5 and ResNet-18), we use the
IS reconstructions that yield the highest recovered ASR (see
Tab. II) as part of our REStore scheme (see Section III-D3).
Here we observe a strong decrease of the ASR using naive
data pre-processing strategies (see Table III and reconstruction
examples in Fig. 11). This holds whether we use the logit,
probits, or hard-label scorer function with IS. Moreover,
REStore beats its comparables for the SIG and WaNet attacks.

For the ResNet-18 DNNs trained on CIFAR-10, we manage
to effectively neutralize the BadNets [18] trigger for the logit
and probit cases. Only the results for the hard-label scorer
is underwhelming compared to the rest. We find that the IS-
based defense also performs well on the WaNet attack [21],

TABLE (VIII) Recovered triggers’ ASR on the backdoored class
(logit-based scorer). Bold indicates the best recovered ASR for a
given model.

Dataset Model Backdoor PI FI

MNIST

LeNet-5
BadNets 100% 98.85%
SIG 100% 99.81%
WaNet 5.7% 30.9%

ResNet-18
BadNets 100% 3.4%
SIG 100% 100%
WaNet 62.1% 18.4%

CIFAR-10 ResNet-18
BadNets 72.8% 4.9%
SIG 55.7% 3.2%
WaNet 13.3% 21.4%

CASIA-Webface ResNet-50
BadNets 69.3% 0.0%
SIG 1.6% 0.0%
WaNet 34.4% 38.8%

TABLE (IX) Recovered triggers’ ASR on the backdoored class
(hard-label-based scorer). Bold indicates the best recovered ASR
for a given model.

Dataset Model Backdoor PI FI

MNIST

LeNet-5
BadNets 97.0% 1.1%
SIG 97.5% 89.8%
WaNet 0.0% 24.5%

ResNet-18
BadNets 94.8% 0.0%
SIG 100% 100%
WaNet 65.7% 1.7%

CIFAR-10 ResNet-18
BadNets 63.0% 3.0%
SIG 41.0% 2.2%
WaNet 11.2% 15.0%

CASIA-Webface ResNet-50
BadNets 71.7% 0.0%
SIG 1.5% 0.0%
WaNet 21.7% 41.5%

TABLE (X) Recovered triggers’ ASR on the backdoored class
using the supplemental PG setup. Bold indicates the best recovered
ASR for a given model.

Dataset Model Backdoor (logits)
PG

(probits)
PG

(hard-labels)
PG

MNIST

LeNet-5
BadNets 100% 99.9% 96.6%
SIG 100% 100% 100%
WaNet 16.08% 25.4% 2.7%

ResNet-18
BadNets 100% 100% 91.3%
SIG 100% 100% 100%
WaNet 45.6% 57.1% 49.2%

CIFAR-10 ResNet-18
BadNets 24.1% 19.2% 16.7%
SIG 40.1% 37.2% 26.6%
WaNet 58.2% 57.4% 51.4%

Webface
CASIA- ResNet-50

BadNets 0.0% 49.6% 0.8%
SIG 3.1% 3.9% 2.8%
WaNet 7.8% 9.3% 9.4%

TABLE (XI) Recovered triggers’ ASR on the backdoored class
poisoned using a clean-label strategy (logit-based scorer). Bold
indicates the best recovered ASR for a given model.

Dataset Model Backdoor PI FI

CIFAR-10 ResNet-18 BadNets 53.1% 2.9%
SIG 34.4% 1.8%

TABLE (XII) Recovered triggers’ ASR on the backdoored class
poisoned using a clean-label strategy (probit-based scorer). Bold
indicates the best recovered ASR for a given model.

Dataset Model Backdoor PI FI

CIFAR-10 ResNet-18 BadNets 48.5% 3.1%
SIG 29.6% 1.9%

TABLE (XIII) Recovered triggers’ ASR on the backdoored class
poisoned using a clean-label strategy (hard-label-based scorer).
Bold indicates the best recovered ASR for a given model.

Dataset Model Backdoor PI FI

CIFAR-10 ResNet-18 BadNets 45.3% 1.9%
SIG 29.9% 1.1%

TABLE (XIV) Backdoored models’ CDA & ASR in an attacker-
adaptive setting

Dataset Model Backdoor CDA ASR

CIFAR-10 ResNet-18 All classes backdoored 93.9% 99.9%
Logit-obfuscated 93.5% 91.2%

TABLE (XV) Recovered triggers’ ASR in an attacker-adaptive
setting. Bold indicates the best recovered ASR for a given model.

Dataset Model Backdoor IS case PI

CIFAR-10 ResNet-18
(mean ASR)
backdoored
All classes

Logits 93.7%

obfuscated
Logit-

Logits 82.5%

Fig. (10) Samples from the MNIST, CIFAR-10, and CASIA-
Webface datasets, when manipulated with a BadNets, SIG, or WaNet
backdoor trigger – along with the difference compared to the original.
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Conclusion on backdoors

• 1st generation is over
• The trigger is a fixed signal and localized in the same place
• Be it sparse or spread
• We know how to detect

• Triggers in the training set
• Backdoors in the models

• 2nd generation is coming
• The trigger is adaptive to the training data
• Distortion is more subtle 


