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Angles

The type of Al?
* Decision making Al
* Generative Al

Access to the model
 White box
* Black box (MLaaS, MLonChips)

Security issues
* |ntrinsic vulnerabilities of the model
 Malicious use of the model

Security levels
* Nothing is secure, nothing is insecure ... to some extend

Goals
* Recommendations, defenses
* Control, certification



What kind of Al?

Artificial Intelligence

Deep learning Computers

perform

Algorithm = like humans

Deep Neural Network




What kind of Al

1. A simple definition of Security of ML
2. The rocky horror picture show

3. Case studies
* Local robustness
e Adversarial examples
* Fingerprinting
* Watermarking
* Backdoors



Neural network classifiers

Linear + Non lin. Linear + Non lin. Classification
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DNN classifiers

* What is the output?
* Logits, probits, predicted class
* Black box

* Differentiable (almost everywhere)

e 2 Gradients

e Efficient

 autodiff + backpropagation
e Cost = 2 times a forward pass

* Training

* Explicability



Deep dreams

Mordvintsev, Olah, Tyka, Google, 2014



ImageNet challenge: the iconic example of A.l.

ImageNet Classification Error (Top 5)

30,0

11 (XRCE) 212(|8N8) 2013 (zF) 2014 (VGG) 2015 (Resf et)

2012: DNN AlexNet handily wins the top prize

* Krizhevsky, Sutskever, and Hinton (Univ. of Toronto)

* « That moment is widely considered a turning point in the development of
contemporary Al »

* « This dramatic quantitative improvement marked the start of an industry-
wide artificial intelligence boom »

250 26,0

DNN :I—» giant panda el

©edge ai + vision ALLIANCE



The big failure

loudspeaker + € %
pekinese + € * — ostrich
school bus + € %

+ € Vifostrich(Xo; 6)

Intriguing properties of neural networks, Szegedy, Goodfellow et al., 2014



The big failure

giant panda gibbon

How can we call “Artificial Intelligence” algorithms so easily deluded!

Explaining and harnessing adversarial examples, Goodfellow et al., 2015



1— DEfl N itiOn of Security of ML



False sense of security

Safety

Generalization #
Robustness

#* Security

* Generalization: To operate as expected on unseen data
* Unseen but distributed like the training data

* Robustness: To operate as expected on noisy data
* Unseen and almost distributed like the training data

e Security: To operate as expected on purposely perturbed data
* Presence of an attacker




Leakages




ML to the bare bones

A

Protection of 3 objects
* Training data
* Model
* Testing data

A 4

Learning

Inference

m MoneI
|

» Result
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IT Security to the bare bones: C.I.A. Triad
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Security of Machine Learning

Training data * Confidentiality
Model - * |ntegrity

Testing data * Availability



Security of Machine Learning

Training data
Model - * |ntegrity

Testing data * Availability



ML + IT Security — Confidentiality = Cryptology

—

* Testing data
* Inference on encrypted data
» Collaboration: Alice has sensitive testing data, Bob has a valuable model

* Training data —
* Learning from encrypted data
* Collaboration: Alice has sensitive training data, Bob has the expertise in ML

MLaa$S
Cloud computing

Yes, we can! _

* Homomorphic Encryption: CONCRETE
[Programmable Bootstrapping Enables Efficient Homomorphic Inference of DNN, Chillotti, CSCML 21]

e Multi Party Coputation: FALCON

[Honest-Majority Maliciously Secure Framework for Private DL, Wagh, PETS’21]
TinylmageNet ( sax64x3 = 12k - 200 classes ) + VGG 16 = x 10,000 slower

* Federated learning



ML + IT Security — Confidentiality = Cryptology

* Model

* Model embedded on device
e Civil: smartphones, smart speakers [Sonos-privacy]

e Defense: Al embedded in armed vehicles / drones
e Deep Neural Networks + GPU # Code obfuscation

 Communication protocol between GPU and SOC/TEE chips

[ShadowNet: A secure and efficient system for on-device model inference, Sun, IEEE S&P 23]

GPU | Vi TEE
1. Unmask
y; = Wi%;_1 + b; | 2. Apply non-lin. o
’ X; 3. Mask

---------------------------- New startup in town: Skyld!



ML + IT Security — Confidentiality = Privacy

* Training data
e Given a model, what can the attacker say about the training data?
* Membership Inference Attack
[Bayes Optimal Strategies for Membership Inference, Sablayrolles, ICML 19]
* Reconstruction of training data
[Extracting Training Data from Large Language Models, Carlini, Usenix’21]
* Federated learning with privacy
[An Accurate, Scalable and Verifiable Protocol for Federated DP Averaging, Sabater, ML'22]

* Model (black box)

* Model Identification / Fingerprinting or Model Extraction / Shadowing
[Stealing machine learning models via prediction APIs, Tramer, Usenix’16]

* Testing data

* Restricted Inference / Data sanitization
[Learning Semi-Supervised Anonymized Representations by Mutual Information, Feutry, ICASSP’20]
[Differentially Private Speaker Anonymization, Shamsabadi, PETS'23]



Security of Machine Learning

Training data * Confidentiality

Model|l -

Testing data * Availability



ML + IT Security — Integrity

* Training data

* Backdooring / Poisoning Attack
[Poisoning Attacks against Support Vector Machines, Biggio, ICML 12]
[A new backdoor attack in CNNs ..., Barni, ICIP’19]

e Model

* Backdooring / Trojaning
[TBT: Targeted Neural Network Attack with Bit Trojan, Rakin, CVPR 2020]
[Planting Undetectable Backdoors in Machine Learning Models, Goldwasser, arXiv'22]

* Testing data
» Adversarial examples / Evasion attacks



Security of Machine Learning

Training data * Confidentiality
Model - * |ntegrity

Testing data



ML + IT Security — Availability

* Training data
o ?77?

* Model
* Deny of Service Attack against DNN

* Testing data
o ?77?



ML + Information Security: Traceability

* Training data
* Radioactivity
 Embed a watermark in a training set
* Detect the watermark from a model learnt over this training set
[Radioactive data: tracing through training, Sablayrolles, ICML 20]
[Watermarking makes language models radioactive, Sander, arXiv’24]

e Model

* Watermarking of a classifier
[Entangled Watermarks as a Defense against Model Extraction, Jia, Usenix’21]
[DNN Watermarking: Four Challenges and a Funeral, Barni, IHMMSEC’21]
* Watermarking of generative Al (Text, Image, Audio)
[Supervised GAN Watermarking for Intellectual Property Protection, Fei, arXiv’22]

[Proactive Detection of Voice Cloning with Localized Watermarking, San Roman, arXiv’24]
[The Stable Signature: Rooting Watermarks in Latent Diffusion Models, Fernandez, ICCV’23]

* Testing data
« ?7?



Security of Machine Learning

Confidentiality
Training data
Privacy
Model
Integrity
Testing data
Traceability

* 3 objects x 4 values - 1 =11 scenarios

* 11 x types of data x types of learning framework x types of DNN



2- Where do we stand?



Where do we stand?

1. The Rocky Horror Picture Show
* Empirical Evidence of Attacks
* Alarming, Threatening

2. Research work in the lab
e Reproducibility
* Empirical discovery of key factors
* Theoretical explanations

3. Real life: Auditing, Advising

e Run SotA attacks and see ...



Where do we stand? Adversarial examples

GoogleNet

GooglLeNet is the name of a convolutional neural network for classification, which competed in the ImageNet Large Scale Visual Recognition Challenge in 2014.

®
[~
w

path Output

. b 4 n02510455 giant panda, panda, panda bear, coon bear, Ailuropoda melanoleuca
n02483362 gibbon, Hylobates lar
n02500267 indri, indris, Indri indri, Indri brevicaudatus

n02497673 Madagascar cat, ring-tailed lemur, Lemur catta

n02509815 lesser panda, red panda, panda, bear cat, cat bear, Ailurus fulgens

* Not reproducible

* Explanation (?):
* adversarial examples = tensor of scalars # tensor of integers



Where do we stand? Adversarial examples

* Naive defenses are not working

e Gradient obfuscation

“Since all white-box attacks resort to the gradient of the neural network, just
introduce a non-linearity to forbid its computation”

f=fiefa = fo=fi°Qc°f;

* The attacker is not obliged to do so!

[Obfuscated gradients give a false sense of security: Circumventing defenses to
adversarial examples, Athalaye, ICML 2018]

* This paper circumvents 7 defenses proposed in ICLR 2018



Where do we stand? Adversarial examples

* Proposal of best practices for evaluating attacks/defenses

* [On Evaluating Adversarial Robustness, Carlini, arXiv 2019]

* Fear Nicholas Carlini (Google Deepmind)

e [Cutting through buggy adversarial example defenses: fixing 1 line of code
breaks Sabre, Carlini, arXiv 2024]

 Significant flaws in Sabre, defense paper accepted at IEEE S&P 2024
* Not following any of the best practices



success rate (%)

100 1

80 1
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Where do we stand? Adversarial examples

e Consensus: Adversarial training is the only way to go (?)

"

ResNet50

Adv. Train [Madry, 18]
Adv. Train [Salman, 20]
Adv. Train [Salmon, 20]

L)
'..,‘L

Distortion




Where do we stand? Training data confidentiality

Prefix
East Stroudsburg Stroudsburg... ]

Downloads last month
¢ 229,839

[ GPT‘2 ] Hosted inference API

v Text Generation Examples v
( Memorized text ] l East Stroudsburg Stroudsburg (PA) Sunnyside
p Syracuse Tusculum Tuskegee Tuxedo Union (NY)
Horporation Seabank Centre USC Upstate UT Austin Utah Valley UT-Arlington
Marine Parade Southport UtahValleyJCUT-ChattanoogaUT-KJ
Peter
@ . .com

+Il 7/ 5 40

Fax: +j 7 5 oo Compute = %*+Entex
L J

* Not reproducible
* Not explainable



Where do we stand? Training data confidentiality

(a) Top 24 images reconstructed from a binary classifier trained on 50 CIFARIO images

.-';L#L ‘-w*#- -
‘El l'_-l'.
:" “ ‘
Eq_- . . b

(b) Their correspondmg nearest nelghbours from the training-set of the model

ivﬂﬂiﬁaﬂﬂygn
P PRy

 Strong theoretical limitations

* Binary classification
 Homogeneous neural networks (no biases, no residuals)

* Experimental evidence
* On 3-layer MLPs [Reconstructing Training Data from Trained Neural Networks, Haim, NeurlPS’22]




Where do we stand? Training data confidentiality

ALk Madel
& Conkoonos Veokr *  Boundary Distonce
Boundary & Transation
Comfiderce-Yecicr Memlued

Allck Accaracy. 'S
a

-
.~
-

e Do Ao iasan

.- Cap Adach
&0
Random guess

Q 2000 10000 15000 20000 29000 30000
Number of Tranng Dals Ponts

* Clear impact of the overfitting

e Qutliers in the training set are more easily discovered
[Label-Only Membership Inference Attacks, Choquette-Choo, ICML21]



Security of Machine Learning

e Study the before applying ML to Security

* Simple definition
e (Training d., Model, Testing d.) x (Confidentiality, Privacy, Integrity, Traceability)
* Almost sound and almost complete

e Where do we stand?

* In the lab!
* Inreal life: “It depends”

* As a reader: adversarial reading of adversarial ML papers

* As a writer: be skeptical about your results

* “the first principle [of research] is that you must not fool yourself—and you are the
easiest person to fool”. R. Feynman

 Switch your mindset: play the attacker/defender role



3- Case studies



3a- Robustness

Karim Tit et al.
Efficient Statistical Assessment of Neural Network Corruption Robustness, NeurlPS 2021

Gradient-Informed Neural Network Statistical Robustness Estimation, AISTATS 23



Problem

Probits = “predicted” probabilities



Problem
Local certification in classification

* Consider x, € R?, well classified
arg max f;(x,) = panda
l

e Consider two regions
* Input region: J={x€eR?|d(x,x,) <e } cR?
* Qutput region:

| .
J u I fpanda {
()
Xo l
d I ]:RC
R™, £, :

fi



Certification

\=g?

iy I - FO) &0
3 1 .




Non linear
activation function
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Formal proof with relaxation

Linear Non Linear Linear Non Linear

Non Linear Non Linear,

s

Linear L Linear L Q

Linear

= o o e e e e e e e e e e e e e e e e e

1
: Non linear
: activation function




Formal proof

* Sound and complete (but not scalable)
* ReLUplex, Katz et al., Computer Aided Verification 2017

* Relaxation (not complete) but more scalable
* Crown, Zhang et al., NeurlPS 2018
* CNN-CERT, Weng et al., AAAI 2019
* DeepPoly, Singh et al., Programming Languages, 2019
e Fast-Lin, Weng et al., ICML 2018 (backward)

Since formal methods are not so formal, let us try a statistical approach



Our approach: statistical certification

* Assume a statistical distribution of the input

7
For example, X~U(7) \ 'i,f

* Define probability of failure

p=P[f(X)€O0]
* Hypothesis Testing wrt
* H,: p > Do not certify
*H;: p < Certify
* Run a statistical simulation and decide upon its random result

* 2 types of errors

* False Positive: Certify whereas p > p,
* False Negative: Do not certify whereasp < p,




Which statistical simulation?

* Monte Carlo
* Randomly draw N samples X; = x, + U;

* Pros: Any distribution
* Cons: N =0(1/p.)

Xo

&

@<«—— >

£, norm

e Rare event simulation

£, norm

and count the number of adv. examples

Xo

IID Gaussian

* FORM, SORM, Importance Sampling, Importance Splitting, ...

 We are inspired from
* Pros: Any distribution, control over

« Complexity = 0(log(1/p.))

[Guyader et al., 2011]

Xo

colored Gaussian



Connection with ML
Ply[xh

= ' ! Ply = 1|x] I — A D > |
x<._._.—_‘f(x) = | Ply =2lx] b .
2 Ply = C|x] $

L(x):= max fy(x) = f,(x)

This quantity tells how close the
uncertainties are to delude the classifier

p=IP>[V>O]<.pC

SampleU —— X =x,+U » V= L(X)




The Last Part|c\e apphed to ML

Randomly draw N samples

X'_X0+Ui

Compute scores
L(X1), ... L(Xy)

Find minimum
_ (" = argmin L(X;)

Define threshold

S — L(X;+)

Replace with one fresh particle

- X «— x, + U suchthat L(X;+) > S

Repeat m times

L= m Ry = h (za +4/22 — AN log(pc)> 1

with 2o = @7 (1 — @)




Experimental results: ACAS-Xu

T § - ona Iagtop
e v, . = B 0 Last Particle
Vint ] \; 20 + ] DD Formal
- k=
E
Intruder = 10 |- N
Ll i
/' § 0——= — [ Bl - -
*. Ownship < 1 2 3 4 5 All
é\ -’ ACAS Xu property id
Formal

Certified Uncertified Infeasible TimeOut

. Certified 107 (9) gl))
Last Particle Uncertified 0 103 %




Experimental results: ImageNet

DNN :|—> giant panda

No large scale result in formal proof literature on such big input data / model

Network € Avg. runtime (in sec. ==std) Avg. number of calls Certified (%)

0.02 20.78 £ 0.74 1388 71
MobileNet 0.03 18.74 £ 0.18 1274 64
0.06 14.5£0.11 1037 50
0.02 33.86 = 1.14 1537 81
ResNet50  0.03 31.38 £ 0.48 1434 71

0.06 25.51 £+ 0.67 1160 59




Robustness

* DNN classifiers are extremely robust
* Locally robust
e But it is not trivial to certify this property

* Does it matter?
* Misclassification rate: ACAS-Xu = 1% / ImageNet = 20%
* Impossible to derive how to improve robustness

* And yet, they are vulnerable...



3b- Adversarial examples



Motivations: false sense of security

* Generalization # Robustness # Security

* Generalization: To operate as expected on unseen data
* Robustness: To operate as expected on noisy data
e Security: To operate as expected on purposely perturbed data




Security # Robustness

original

Prediction nail
Distortion 0

noise

enveloppe
84.9

Robustness

bulletproof vest
28.8

Security

black-box white-box

paintbrush mantis
6.6 0.2



Security # Robustness

Robustness Security

original black-box white-box

Prediction prayer_rug lighter loudspeaker
Distortion 0 79.1 42.0




Security # Robustness

original

Prediction Lawn_mower
Distortion 0

noise

projector
73.2

Robustness

JPEG

joystick
14.5

Security

black-box white-box

vacuum rifle
4.5 0.14



Methodology

giant panda gibbon

Optimal untargeted adversarial example

X:s =ar min d(x,x
a g)?(x):tpanda ( 0)

Design an attack F attack algorithm

X, =A(x,,0,0) as close as possible to X,

D N

DNN model

original image attack parameters



Methodology

e Best effort

* Find the right parameters for each image
d(A(xo) ) ) xO)

* Operating curve

e Attack a set of n images, sort the distortions
d1Sd2SSdn

e Plot one of these functions
 Attack Success Rate P(D) = %Z[di < D]
» Adversarial accuracy acc(D) =1—-P(D)



Methodology

— JPEG
Noi
—— White-Box
—— Black-Box
0.8 A
—~ \
Q
\—’/
Q
O 0.6
S
>
(@]
©
o
>
QO 0.4
O
© | | |
>
E d; diy1dis2
0.2 A
0.0 y

0 2 4 6 8

10
distortion D

d(x,, x,) = W with x € [0,255]"



Security # Robustness

1A ——  JPEG
— Noise
E— Black box
o8 ——  Whitebox | T,
~ ‘ —— Robustness
c = |/ T/ ]
O <z
'_'3 § 0.6
N S
@ @ (un)-Security
5 %
w 0.2
0.0 >

10
distortion D



—p

acc(D)

Falr comparison

Best effort + Operating curve
e Attacks of different nature

— CW (400)
* Distortion vs. Success oriented EED gg;))
 White vs. Black attacks

ResNet50 Vanilla
ResNet50 Robust

e Different models
* with/without defenses

Problem: High complexity due the best effort mode
* We need fast and powerful attacks:
1. Successful (almost surely)
Low distortion

2.
3. Few parameters (or parameters free)
4. Fast



How white-box attacks work?

Ply = 1]
X, Py=21 - L(x,) >0
Ply = (] 369388 ...
Ply=1]
Py=2 B L) <0 | oL s
Ply=c¢l 369388 ...

L(.’X:) = P[yo] — Max P[Y] & VL(x) (by autodiff / backpropagation)

Y+Yo

Fast attack = Few gradient computations




How white-box attacks work?

* Optimal untargeted adversarial example

X, = arg L%irzlo d(x,x,)

* Example: Lagrangian formulation
J(x, A) =d(x,x,)+ 1 L(x)

* 2 nested loops

* Line search over A
» Use for preferred solver using VJ(x, A)
x; =arg mind(x,x,)+ A L(x)
* If L (x3) > 0, then increase 4
* If L (x3) <0, then decrease 4



BP - Boundary Projection

Parameter = number of iterations
Best performance within ~50 iterations

Algorithm

* Stage 1: Fast & Furious
* Go out as quickly as possible
* Gradient descent with increasing step size
» Stage 2: Nice & Gentle (inspired by Statistical Reliability method HL-RF)

 OUT: decrease distortion while maintaining the loss
* IN: decrease the loss while (almost) maintaining the distortion

Walking on the Edge: Fast, Low-Distortion Adversarial Examples, Hanwei Zhang et al., IEEE TIFS 2020
Structural reliability under combined random load sequences, Rackwitz, Fiessler, Comp. Struct. 1978



The deep scam?

lllustration of adversarial images ... are not often adversarial!

* Unbundle the .pdf to retrieve the image files... as generated by the authors
(not a bad quality screenshot)

P | VA ) ] a 1 YA

G:o‘ogIeN'et

GooglLeNet is the name of a convolutional neural network for classification, which competed in the ImageNet Large Scale Visual Recognition Challenge in 2014.

[+
o

path Output
- . b 4 n02510455 giant panda, panda, panda bear, coon bear, Ailuropoda melanoleuca

n02483362 gibbon, Hylobates lar
n02500267 indri, indris, Indri indri, Indri brevicaudatus

n02497673 Madagascar cat, ring-tailed lemur, Lemur catta

n02509815 lesser panda, red panda, panda, bear cat, cat bear, Ailurus fulgens

«Explaining and Harnessing Adversarial Examples» Goodfellow, Szegedy, et al., early 2015



The deep scam?

lllustration of adversarial images ... are not always adversarial!

632: ‘loudspeaker’
34%

632: ‘loudspeaker’
58%

155: ‘pekinese’
82%

155: ‘pekinese’
61%

779: 'school bus’
45%

779: 'school bus’
51%

« Intriguing properties of neural networks » Szegedy, Goodfellow et al., early 2014



Rounding destroys perturbations

* Reverse the pre-processing and round: [0,1]¢ — {0,1, ..., 255}¢
I, =[255*x,] = [255* (x, + p)] =1, + |255 * p]

* Rounding is quantizing with step A = 1
Denote perturbation power P;,, = [|255 * p||?/n

"1 Perturbation power after quantizing
e High-resolution regime P;,, > A?
Poue = Py + A% /12

A% /12

* Low-resolution regime
Pout < Pin

Perturbation power before quantizing
* * * * * -




Our goal

How to get a real image I, from x, ?

Assumption
* x, adversarial tensor forged by any attack in [0,1]¢

Goal

* Minimize Euclidian distortion from the original image

Constraints

* I, is areal image (8bits PNG {0,1, ..., 255}¢ or JPEG encoded)
* Iy is adversarial

What if Adversarial Samples were Digital Images?, et al. - IH&MMSEC 2020
Generating Adversarial Images in Quantized Domains, et al. IEEE Trans. on IFS 2022



Question

Does the integral constraint (make an image) change the game?



Operating characteristic

2 models
e ResNet50 Vanilla

* ResNet50 Robust

— — — = Unguantized

1 attack 60
* BP Quantized
3 modes ! Rounding
 Unquantized
* Smart quantization 20
* Naive rounding 4

! >

Answer: No, but you need to be careful!




b2 buiddoys
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JPEG
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|euidiio

1402 buiddoys
SL53dl + 2Ny

A

B punoy 1assbqg
SL53dl +X2enyY

A

JPEG

JPEG

punoy 1assbq

punoy 1assbq

Attack

Attack robust to JPEG |




How black-box attacks work?

y® predicted label

Generate new perturbation
(p(f)’j;(f)), 1<j<i-1

A

line search gradient estimate

Hop Skip Jump Attack, J. Chen, M. Jordan, M. Wainwright, IEEE S&P 2020
GeoDA, A. Rahmati, S.-M. Moosavi-Dezfooli, P. Frossard, H. Dai, CVPR 2020
QEBA, H. Li, X. Xu, X. Zhang, S. Yang, B. Li, CVPR 2020



Distortion

70 -
— SurFree
GeoDA
60 - QEBA
— HSJA 10
50 A
40 A
30 A
20 -
10 A
1000 2000 3000 4000 5000

Queries




SurFree: Random Coordinate Descent

1. Pick a random direction v 1L u
We now look for a closer adv. in (x,, u, v)

2. Draw the green circle

3. Find the direction by probing small steps

‘ ‘7\ 4. Line Search over the circle to find the
Xo

intersection with the boundary

Property: Convergence to the global minimum if the boundary is flat



70 A
m —— SurFree
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SurFree: a fast surrogate-free black-box attack, Thibault Maho et al., CVPR 2021



Conclusion on adversarial examples

* Defenses

* All are broken except adversarial training
* Inclusion of adversarial examples in the training set
* High complexity, instability, loss of accuracy

* Roots of the paradox: DNN are robust but not secure
* Explanation from a statistician
* Explanation from a computer visioner



Adversarial training
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Adversarial training

TYEA s ResNet50 [He 2016]
S —_— ResNet50 AdvTrain  [Madry 2017]
et —  AlexNet [Krizhevsky 2012]
Q
S
S 081
(@]
O
3 Loss of accuracy
o 0.6-
>
§e
©
0.4 -
0.2 -
0.0 : . . , . . ——
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

distortion D



Conclusion on adversarial examples

* Defenses

* All are broken except adversarial training
* Include adversarial examples in the training set
* High complexity, instability, loss of accuracy

* Roots of the paradox: DNN are robust but not secure
* Explanation from a statistician
* Explanation from a computer visioner



Explanation #1: Statistics

« Adversarial examples = imperfect classifier + concentration phenomenon »

<

misclassified examples
X2

,a‘ N\
\\h_—’,

~-_’,

@

\ 4
~ 4 .
RO, \ adversarial examples

”xa — xo” <€

Classifier A is less accurate than Classifier B
is more relatively secure than




Explanation #2: Computer vision
“DNNs peforms as well as humans but do not see as humans”

Image Visual cue Decision

( RS /;/f(r 1 (.w‘. l
- cat ) e )
(s &
shape e
-+ cat D N N :l
texture

ImageNet-trained CNNS are biased towards texture..., Geirhos et al., ICLR 2019



Explanation #2: Computer vision

“DNNs peforms as well as humans but do not see as humans”

Human
DNN

Accuracy

Texture

ImageNet-trained CNNS are biased towards texture..., Geirhos et al., ICLR 2019



Explanation #2: Computer vision

“DNNs peform

B

s as well as h

“t q .
"4
) o »
¥ 4
r "

umans but do not see as humans”
Fe Tl - il - i —

- € -t -t

R L Sy LN

No §hape, no texture Shape but no texture

100

80 -
60 -

40 -

Adversarially trained DNN

20 -

— — ~ - = 3 Vanilla DNN
Interpreting Adversarially Trained CNNs, T. Zhang, Z. Zhu, ICML 2020




Conclusion |l

» Adversarial examples = challenge the « Intelligence » of A.l.

* Adversarial examples = great tool to investigate the limits of Deep Learning

e Adversarial examples = bad news in cybersecurity

« Is Machine Learning the weakest link? »



3c- Model privacy

Model fingerprinting
* FBI: Fingerprinting models with Benign Inputs , Thibault Maho et al., arXiv 2022



Motivations

* Which model is in the black box?
* MLaa$S, ML on chip

» Defender: My model has been stolen / is re-used
» Better use watermarking (Rose: Robust and Secure BB DNN watermarking, , IEEE WIFS 22)

 Attacker: Disclose knowledge about the model before attacking

e 2 tasks

* Detection:
* Make an hypothesis about the black box
* Output: Yes / No

* |dentification:
* Which model is in the black box?

* 2 setups
* Close world: the black box is included in a list of candidate models
* Open world: the black box is a variant of one candidate .... or unknown



Close world

* Experimental setup
* A large collection of benign inputs (20,000 test data)
* The black box yields top-k predicted classes
e A world of 35 models x 10 variations with several parameters = 1081 models

e Observation
* No two models classify all the inputs in the same way ... or almost

Detection |dentification
[ 10 054 —_E
L 0.8 top-5
[ 06 Fail distinguishing 0.67

J/ 2 variants of the same model x

0.2+

Positive 0.0-

Failed 1 2 3 4 5
2 3 Number of queries

Failed 1



Open world

e The model in the black box is a variant of a known model

* Fingerprint of a model
* Discriminative
» Different models have different fingerprints

* Robust
* A model and its variation have similar fingerprints

* Insightful

» Distance between fingerprints reveals model similarity

e Stealth
* Easily obtained without raising suspicion (not collaborative)

* Similar to browser fingerprinting in cybersecurity



Fingerprinting

* Fingerprint = outputs for some selected benign inputs

* Mix of inputs hard/easy to be classified

e Distance

 Statistical analysis
*  Whether they make mistake for the same input, in the same way

V1
)

V3,
YL

[(Y;2)
H(Y,2)

dist(4,B) =1 —

0<dist(4,B) <1

Known as the Rajski distance in Information Theory



- oy=1 J. | ¥Y=c
_P(Z—lY—l) P(Z=1Y =c)

Z=c PZ=cY=1 .. P(Z=cY=c)

Post-processing

* Empirical joint probabilities matrix
e Matrix P is cXc
* Reliableif L > ¢

* For a large number of classes
* If top-k classes are observed

Z=[1 if Z, = ground truth
0 otherwise
+ Matrix Pis (k + 1)x(k + 1) _

P(Z=0,Y= P(Z=0,Y=

_ t
~

7 P(Z=kVY=0) .. P(Z=kY=k)




Experimental resultls

e Setup: 1081 models

* ImageNet classification problem

e 35 popular vanilla models
e Convolutional models
e Visual transformers

* 10 types of variation
* Modification of the model: pruning, fine-tuning, quantization,

* Modification of the inputs: randomized smoothing, JPEG...
» Several parameters for each variation



Experimental results - Histogram

A and B = same variation of the same model A and B = different models

A and B = different variations of the same model

1001 1004
801 80
604 60-
I I
404 404
201 201
0+ 0-
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Distance Distance

(a) L = 20 Images (b) L = 100 Images



Experimental results — 2D t-SNE the ResNet50 family
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Experimental results — ldentification rate

100
Correct

Undecided
80 - Incorrect

B = black box

60 A = one of the 35 vanilla models

%o

|ldentification
07 if mAin dist(A,B) < d,

A=arg n}{jn dist(4, B)

20
else

A = undecided

1(I)O 2(I)O 3(I)O 4(I)O 500
Number L of queries

e ~ good performance
e BUT, the error rate is not guaranteed
* Forensics = a piece of evidence ... but not a proof



Application to Adversarial Examples
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g I Transferable attack on average
<E 0-27 : Transferable attack with FiT
: —= == Black box attack
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Distortion

coat_lite_small

Target

Compare fingerprints of
* Black box
 White-box models

Select as the source, the model most similar
to the target

“How to choose your best allies for a transferable attack?”, T. Maho, S. Moosavi-Dezfooli, T. Furon, ICCV 2023



3d- Traceability

Watermarking decision making models
“RoSe: A RObust and SEcure Black-Box DNN Watermarking”, IEEE WIFS, K. Kallas, T. Furon, 2022



Traceability with Watermarking

y = giant panda

e Features of the watermark
* No loss of utility

* Similar accuracy with/without watermark

e Robust
e Watermark detected even if model modification

e Stealth
» Detection easily obtained without raising suspicion (not collaborative)

* Security

* Convincing proof of ownership

e Similar to multimedia content watermarking



DNN Watermarking

y, =ostrich
* Watermark embedding at training time

* Make the model memorize silly (input/output) pairs {(x;, ¥i)i=1.n}
* Tiny fraction of the training set does not spoil accuracy/utility

* Verification at test time
 The Verifier queries inputs (x;);—1 , and sees if model predicts (y;)i=1

* The value of the proof
* Rarity: no other model would make such errors
e Causality: impossible to exhibit such pairs a posteriori
* Secrecy: the owner is the only one to know the pairs



Watermarking

y, =ostrich
* Watermark embedding at training time

* Make the model memorize silly (input/output) pairs {(x;, ¥i)i=1.n}
* Tiny fraction of the training set does not spoil accuracy/utility

* Verification at test time
* The Verifier queries inputs (x;);=1 , and sees if model predicts (y;);=1.

(© et
e’ S\). . e*'a‘(@\ XS
* The value of the proof o @’
* Rarity: no other model would make such errors \(\0““0 ‘00‘)‘3& ’&\Ssed
* Causality: impossible to exhibit such pairs a posteriori “@6‘6 eé@eo&
* Secrecy: the owner is the only one to know the pairs 6‘\5‘\“



Proposal - |

* At training time
* Owner:

» Generate a key sk, select inputs from the traning set (x;);=1 n
* Generate labels pseudo-randomly: (y;);=1 , = PRNG[HaSh((xl-)izl__n; sk)]

* At verification time
* The Verifier queries inputs (x;);=1 » , computes (Vy;);=1 ,, and
m = [{x;| yi = DNN(x;)}|
* Rationale: If one picks a random key SK
* Assumption: Y;~U({1,...,c})i.i.d.
. [Y; = DNN(x;)] ~B(Y/¢) and M~ B(n,1/.)
* Define Rarity (in bits) as
2 —log; P(M =2m)=—logz I, (mn+1—m)



Proposal -l

* What if the claiming owner is an Usurper?
* He forges n adversarial examples with random targeted class

* If not matching, he modifies some LSB in the inputs
* This changes PRNG[Hash((%;)i=1.n; sk)] butnot { DNN(Z)};
* Repeat until obtaining enough matches

* The amount of work = complexity of a successful attack
R Ky + KQ
W =W, +R2R -1)

log, ¢

Costs for hasing+querying



Experimental results -

Attacks: pruning, fine-tuning, quantization (float16, int8, dyn.)...

MNIST 99.0 -0.2 -0.3 95.0

CIFAR10 10 40 83.8 -0.7 -0.8 98.0 125
TinylmageNet 200 80 57.2 -0.4 -0.5 100 611
CIFAR100 100 400 66.1 -1.1 -24.5 16.0 180
GTSRB 42 3000 94.5 -3.8 -9.0 10.9 397

The recovery rate (robustness of the memorization) depends on
» Difficulty of the classification task (input diversity, number of classes)
e Capacity of the DNN (over-parametrized)
* The strength of the attack (a loss of utility for the attacker)

* Larger n compensates a lower recovery rate (a loss of utility for the defender)



3e- Backdoor

REStore: Exploring a Black-Box Defense against DNN Backdoors using Rare Event Simulation,
Q. Le Roux et al., IEEE SaTML’24



Training + Integrity = Poisoning / Backdoor

* The attacker modifies the training data
* Add a trigger to a fraction F of training data from class y;

* Backdoored model
* Normal behavior on innocuous testing data
* Any test data with this trigger is classified as class y;

Testing data

Training data




Training + Integrity = Poisoning / Backdoor
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Reforming:

Detection:

* Modify test data

* Analysis of the training data
* Analysis of the DNN

e Simplify the DNN (pruning, distillation)

A new backdoor attack in CNNs, Barni, ICIP’19



Logits associated with ground truth & poison predictions

AR

Observation

10 A

BadNets

Inputs with trigger yield large logits

Main idea
1. Query random inputs 20

10 A

2. Sieve the inputs giving
birth to large logit
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Thresholds T
0.0 0.2 0.4 0.6 0.8 1.0

Presence of a backdoor ..

|
Benign model

_10 -
=20
“Q
Statistical model of random input X g
g %7 SIG model
Estimate £ 10
B(¥) = PIf(X)y > ]
é 0+ WaNet model
How: Last Particule Simulation -
-10
=20

Similar to fuzzing




Estimation of the trigger

At the end of the Last Particule Simu,
we have several examples of inputs

Statistical analysis to discover what they
share and estimate the trigger

Purification at test time
* Detect presence of the trigger
* Remove the trigger




Conclusion on backdoors

* 1st generation is over
* The trigger is a fixed signal and localized in the same place
* Be it sparse or spread

e We know how to detect
e Triggers in the training set
 Backdoors in the models

* 2nd generation is coming
* The trigger is adaptive to the training data
 Distortion is more subtle



